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Replica exchange molecular dynamics (REMD) simulations have become an important tool to study proteins
and other biological molecules in silico. However, such investigations require considerable, and often
prohibitive, numerical effort when the molecules are simulated in explicit solvents. In this communication
we show that in this case the cost can be minimized by choosing the number of replicas as N ~ 1 +
0.594+/C In(Tax/Tiin), Where C is the specific heat, and the temperatures distributed according to TPV ~

Tmin(Tmax/ Tmin)(F -1 )-

Replica exchange molecular dynamics (REMD) simulations
have become an important tool to study proteins and other
biological molecules in silico. However, such investigations
require considerable, and often prohibitive, numerical effort
when the molecules are simulated in explicit solvents. In this
communication we show that in this case the cost can be
minimized by choosing the number of replicas as
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with C the specific heat, and the temperatures distributed
according to
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In the replica exchange method! 3 regular thermal Monte
Carlo (MC) or molecular dynamics (MD) simulations are
performed in parallel on a ladder of temperatures. T is usually
the temperature of interest while T« is chosen so that the largest
relevant barriers in the system can be overcome within a time
tmin. At certain times (At > ty,in) the current conformations of
replicas at neighboring temperatures are exchanged according
to a generalized Metropolis rule.* As a consequence, individual
replicas perform a random walk in temperature space leading
to a faster convergence than observed by spending the entire
computer time on regular low temperature simulations. Note
that the number of round trips from low temperatures to high
temperatures and back is a lower bound for the number of
independent configurations observed at Tpmi, and, therefore,
measures the efficiency of the algorithms.

Depending on the system under study, the required numerical
costs can still be daunting. A prime example is simulations of
biological molecules, such as proteins, in explicit solvent: For
realiable studies, the solvent part has to be much larger than
the biomolecule investigated. There have been a number of
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attempts in recent years to speed up simulations by optimizing
the temperature discretization.>~'? The most promising are based
on the analysis of the flow of replicas across temperature
space,”” 1! which allows for an iterative improvement of the
discretization. The advantage of these schemes is that they are
very general. However, they are also often very costly. For this
reason, in the present letter, we choose a different approach.
Utilizing a priori knowledge on the system, for the special case
of proteins in an explicit solvent we derive simple formulas for
optimizing the temperature distribution and the number of
replicas. For this we assume that the behavior of the full system
is dominated by the solvent part, and most solvent models
employed do not show a phase transition in the temperature
range of interest.'® The problem of broken ergodicity,!! i.e., the
state space of the full system partitioning into disjoint subsets,
is less severe in such cases. Moreover, such systems exhibit a
heat capacity that is practically constant over a wide range of
temperatures,'? a feature that allows a simple analytical estimate
of the acceptance probabilities. Constant heat capacity and lack
of broken ergodicity are the two assumptions required in the
following derivation of our formulas.

In the following, we consider REMD with N replicas and N
temperatures 7; numbered i = 1, ..., N. As ergodicity is not
broken, the flow transition probabilities between neighboring
temperatures are given by the average acceptance probability.!!
The second ingredient is that for systems with a constant heat
capacity C (in units of kg) over a wide range of temperatures
the density of states can be approximated by that of a d = 2C
dimensional harmonic oscillator.>~7 The resulting average
acceptance probability for replica exchange between tempera-
tures T and T" is given by
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with R = Max(T'/T,T/T") and the incomplete Beta-function,
B(x;a,b) = f§ t*"! (1 — H)b~! dt in the numerator, while the
complete Beta function, B(a,b) = B(l;a,b), is used in the
denominator. Optimal flow across temperature space requires
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Figure 1. Optimal number of replicas, N°?, vs total heat capacity C
for various values of Tyux/Tmin), (from bottom 1.5, 2,5, 10, and 20),
determined from minimizing the round trip time, eq 4, and using eq 3
as acceptance probability; the lines denote the approximation eq 1.

constant acceptance probabilities.!! As a consequence, R is
constant, and R = (Tya/Tmin)/¥~ D leads to the optimal
temperature distribution of eq 2. Discretization along these lines
has been proposed before,>8 but see also the discussion in ref
12. We emphasize here that it is indeed the optimal one under
the above assumptions.

Further optimization is possible by minimizing the average
round trip time 7 as a function of the number of replicas.!* As
all transition probabilities are equal, 7 is given by'*
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Minimizing this quantity for particular values of C and (Tmax/
Tmin) leads to the data points shown in Figure 1. Their asymptotic
behavior can be determined analytically. Using the comple-
mentary error function, eq 3 can be approximated for large
values of C by
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Defining a scaled number of replicas,
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the average round trip time is given for large values of N in the
parameter-free form
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Minimizing the above equation numerically leads to v°P' =
0.594. Inserting v°P* in eq 6 and including corrections for small
C, we obtain our expression for the optimal number of replicas
in eq 1. Figure 1 demonstrates the quality of that approximation.
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Equations 2 and 1 are the central results of this contribution.
They provide a simple cooking recipe for optimizing REMD
simulations of proteins with explicit solvent (and other systems
with unbroken ergodicity and constant heat capacity) from
scratch, without the need for any iteration. Required input are
only the values of two extremal temperatures, Tmin and Tiax,
and the total heat capacity C. The latter can be determined either
by a canonical simulation run at Ty, or, if the specific heat of
the solvent model, cso, is known beforehand, via the ap-
proximation C ~ Mc, with M the number of solvent
molecules. Given their ease of use, we expect that our formulas'?
will increase further the usefulness of explicit solvent REMD
for studies of proteins and other biological molecules.!6~1°
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