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Abstract

The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by
lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-
sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high
statistics of animals with up to several thousand sites in all dimensigrdZ 9. The partition sum (number of different
animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly
known critical exponents in dimensions 2, 3, 4, an8. In addition, we present the hitherto most precise estimates for growth
constants ir/ > 3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over
exponent at the adsorption transition predicted by Janssen and Lyssy.
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1. Introduction Therefore the number of animals (i.e. the mi-
crocanonical partition sum) and the gyration radius

Site lattice animals are clusters of connected sites should scale for large/ as
on a regular lattice. Such glqsters plqy an important Iy~ VNP QA+ b, NTD ), 1)
role in many models of statistical physics, as percola-
tion and the Ising model. The ensemble of site animals an
is_defined by giving the same v_vei_ght to all clusters gy ~ NV(1+b.N"2 +...). 2)
with the same numbaey of sites. Similarly one can de-
fine bond animals and site/bond trees. They are in the
same universality class (same exponents, same scalin

In the present paper we verify all previous predic-
tions [1-4] by means of a novel Monte Carlo algo-
Yithm which follows essentially the strategy used in

functions) as randomly branched polymers. the pruned-enriched Rosenbluth meth@®@ERM) [5].
This is a recursively (depth first) implemented sequen-
* Corresponding author. tial sampling method with importance sampling (bias)
E-mail addressh.p.hsu@fz-juelich.déH.-P. Hsu). and re-sampling (“population control”).

0010-4655/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2005.03.027


http://www.elsevier.com/locate/cpc
mailto:h.p.hsu@fz-juelich.de

H.-P. Hsu et al. / Computer Physics Communications 169 (2005) 114-116

400 r
300
200 |

100

-100 |

T

oo

Table 1

115

Main results for site animals. For convenience we also give in the
second column the critical-values for site percolation
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Fig. 1. A typical lattice animal with 12000 sites on the square lattice.

Essentially we start simulating site percolation
clusters by abreadth firstLeath algorithm[6] at a
slightly subcritical value of the occupation probabil-
ity, re-weigh them according to the animal ensemble,
and prune or branch the further growth according to
a heuristic fitness function. In contrast to most previ-
ous applications of PERM, this fitness functiomist
the weight with which the actual configuration would
contribute to the partition sum, but is closely related to
it. A typical 2-d site animal is shown iRig. 1

2. Numerical results

We first studied site animals in 2 to 9 dimensions.
Our estimates of the growth constantas well as all
the exponentg, v, and A are listed inTable 1 They
are all in very good agreement with previous predic-
tions[1-4,7] In particular, our data satisfy the Parisi
and Sourlas predictioh= (d —2)v+1[3], seeFig. 2
Next, we studied site animals grafted to a planar attrac-
tive surface. The partition sum now is written as

N
ZV@ =) Anmg™, 3)
m=1
where Ay (m) is the number of configurations of lat-
tice animals withV sitesm of which are located on the
walls, andg = /X7 is the Boltzmann factok > 0

d pec a=Inu 0 v A
2 05927 1401815%30) 1.0(exact) 064125) 0.9(1)
3 03116 2121858825 3/2 (exact) Y2 (exact) 075(8)
4 01968 25878586) 1.8356) 0.416330) 0.57(8)
5 01407 29223186) 2.080(7) 0.3594) 0.47(7)
6 01090 317852Q4) 2261120 0.3154) 0.39(6)
7 00889 338408@5) 2.40(2) 0.282(5) 0.26(6)
8 0.0752 355482714) 5/2 (exact) ¥4 (exact) log(?)
9 00652 3700523100 5/2(exact) ¥4 (exact) 025(5)
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Fig. 2. The critical exponentsand (6 — 1)/(d — 2) againstd.

hand it is clear that any cluster will collapse onto the
wall, if g becomes sufficiently large. Therefore we ex-
pect a phase transition from a grafted but otherwise
detached phase to an adsorbed phase, similar to the
transition observed also for linear polymers.

Near the critical point we expect a scaling ansatz

ZPq) ~u NN [(g — goN?], (4)

with the exponent; and the crossover exponegt
being new exponents. Evaluating the derivative of
In Z](Vl)(q) with respect tag at g = ¢., we obtain for
the average energfy(g.) = (em) ~ N®. From the
second derivative we obtain for the specific heat per
monomer near (but not exactly at) the critical point
CN () = w77z ({(em)?) — (em)?) ~ (g — qc) ™ with

a =2-1/¢. In principle, all three scaling laws can be
used to locate the critical valug. With conventional
(Metropolis type) Monte Carlo simulations usually the

is the attractive energy between the monomer and the scaling law of specific heat is used since precise esti-

wall. As ¢ — 1, there is no attraction between the
monomer and the wall, i.iﬁ)(l) ~ Zy.Onthe other

mates of the partition sum are difficult to obtain. With
PERM we do have very precise estimateié}) (@),
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Table 2 exponents, and we verified the values of these expo-
Critical Boltzmann factors, crossover exponents, and critical ex- nents whenever they are exactly known. We also ver-
ponentsd at the adsorption transition for site animals on simple ified that the cross-over exponent for branched p0|y_
(hyper-)cubic lattices grafted to a flat attractive wall . . .

mer adsorption on planar walls is super-universal for

Dimension qc 4 Os d > 2, as predicted some time ago (but notdot 2!),
2 227788) 0.480(4) 0.870(9) and we gave precise estimates of the other critical ex-
2 1‘212‘7“7;2 82&2 igzgz) ponents at this adsorption transition. Our methods can
5 117865) 0:51(3) 2:18(4) also be applied to bond animals and lattice trg@s

and are equally efficient in these cases.

and therefore we can use E¢), indeed the scaling of
the averageEy (¢.), which gives—together with the  References
two others—the most precise estimate.
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