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ABSTRACT: We present large statistics simulations of 3-dimensional star polymers with up to f ) 80
arms and with up to 4000 monomers per arm for small values of f. They were done for the Domb-Joyce
model on the simple cubic lattice. This is a model with soft core exclusion which allows multiple occupancy
of sites but punishes each same-site pair of monomers with a Boltzmann factor v < 1. We use this to
allow all arms to be attached at the central site, and we use the “magic” value v ) 0.6 to minimize
corrections to scaling. The simulations are made with a very efficient chain growth algorithm with
resampling, PERM, modified to allow simultaneous growth of all arms. This allows us to measure not
only the swelling (as observed from the center-to-end distances) but also the partition sum. The latter
gives very precise estimates of the critical exponents γf. For completeness we made also extensive
simulations of linear (unbranched) polymers which give the best estimates for the exponent γ.

1. Introduction
Star polymers are of interest both for their technical

applications, ranging from lubricant additives to paints,1,2

and for the theoretical challenge which they represent.
Polymer theory in general is one of the prime fields
where renormalization group theory can be used and
compared in detail with real experiments.3,4 The sim-
plest nontrivial objects in this respect are the partition
sum and the rms end-to-end distance of a single long
flexible linear (unbranched) polymer with N monomers
in a good solvent, which scale as

and

Star polymers, i.e., f such chains linked together at a
single point, are some of the simplest examples of
polymers with nontrivial topology. As shown by Du-
plantier,5 all such polymer networks are characterized
by equations similar to eqs 1 and 2, with the critical
fugacity µ and the critical exponent ν being the same
for all topologies, but with γ being universal only within
each topology. For star polymers composed of f arms of
length N each, one has in particular

and

where RN,f is the rms Euclidean center-to-end distance.
The behavior of γf and of the swelling factor Af are of

central interest, for both finite f and for f f ∞. In two
dimensions, γf can be calculated exactly using conformal
invariance,5 but no exact results are known for d ) 3.
Renormalization group methods give ε expansions up
to third power in ε ) 4 - d,6 but these are nonconver-
gent power series and have to be resummed before being
applicable in d ) 3. The results are debated, in
particular for large values of f.7 For the swelling factor

the situation is similarly unclear. Phenomenologists
tend to compare with predictions based on Gaussian
(i.e., free) chains8 or on heuristic assumptions.9,10 There
exist several renormalization group calculations, but
those not based heavily on simulation data11,12 seem to
describe some of the data rather poorly, and Monte
Carlo simulations are needed to fix free parameters in
such theories.13,14

In view of this, Monte Carlo15-20 and molecular
dynamics21,22 simulations have played a major role in
the efforts to understand the behavior of star polymers.
Molecular dynamics simulations22 have indeed been
used to study very large stars, with up to 80 arms of
length N ) 100 each, but it is not clear whether these
simulations have really reached equilibrium. Moreover,
both molecular dynamics and Monte Carlo methods with
fixed chain lengths (including the pivot algorithm14,20)
cannot measure the partition sum and thus give no
information on γf. For the latter one has to use chain
growth methods.15-17,19,20,23 Unfortunately, with the
methods used so far it has not been possible to go beyond
24 arms,17 and even these were too short and the data
were too noisy to provide a clear-cut picture of the
asymptotic behavior.

We decided therefore to perform simulations with
several improvements which allow us to reach much
larger systems and much higher accuracy. To obtain a
good estimate for µ and for the critical exponents of
unbranched polymers, we also made extensive simula-
tions of linear chains. The model and the method of
simulation are described in the next section. Results are
given in section 3, while we end with a discussion in
section 4.

2. Model and Method

Let us first describe in detail our model. For efficiency,
and since we are only interested in scaling behavior,
we use a lattice model. Indeed, we use the simplest
version, the simple cubic lattice. But instead of simulat-
ing self-avoiding walks as in previous works, we simu-
late the Domb-Joyce model24 at its “magic” interaction
strength v ) v*. In the Domb-Joyce model polymers
are described by lattice walks where monomers sit at
sites and are connected by bonds of length 1. Multiple

ZN ∼ µ-NN γ-1 (1)

RN
2 ≈ A1N

2ν (2)

ZN,f ∼ µ-fNN γf -1 (3)

RN,f
2 ≈ Af N 2ν (4)
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visits to the same site are allowed, but for any pair of
monomers occupying the same site one has a repulsive
energy ε > 0, giving rise to a Boltzmann factor v ) exp-
(-âε) < 1. The partition sum of a linear chain molecule
of N + 1 monomers is thus a sum over all walks of N
steps, each weighted with vm, where m is the total
number of pairs occupying the same site, m ) ∑i<jδxi,xj.
For star polymers we studied in the present work two
variants. In both variants arms of N monomers are
attached to a central site. In the first variant, the central
site is singly occupied. In the second, it is occupied by f
monomers, one for each arm. We studied both variants
in order to verify that results were independent of this
detail, and we include in our final error estimates the
uncertainty it entails.

Using the Domb-Joyce model has two main advan-
tages. First of all, it allows us to attach a large number
of arms to a pointlike center. In the present work, we
go up to f ) 80.25 Previously, authors had used extended
cores. Although these cores were much smaller than the
radii of the polymers themselves and should thus not
destroy the asymptotic scaling, they do introduce a finite
length scale and present therefore corrections to scaling
terms which complicate the analysis.

More important is that there is one special (“magic”)
value of v, called v* in the following, where corrections
to scaling are minimal and where asymptotic scaling
laws are reached fastest. For single chains it has been
estimated26,27 as v* ≈ 0.6 with rather small error bars,
and we shall in the following assume this value to be
exact. In the renormalization group language, the flow
of the effective Hamiltonian to its fixed point in the
stable manifold of the latter contains one direction of
slowest approach. For a generic starting point there is
a nonzero component in this direction, which then
determines the leading correction to scaling. If one
starts however with the flow such that this component
is absent, the approach to scaling is governed by the
next-to-leading correction term and is much faster. A
similar observation has been made also for off-lattice
bead-rod models with fixed bond length, where the
leading corrections to scaling are absent for a certain
“magic” ratio between bead size and rod length.28-30

Since the value of v* should depend only on the
internal structure of the chains, for star polymers it
should be independent of the number of arms. For the
bead-rod model this was carefully verified in ref 14.
We thus simulated only with v ) v*.

For our simulations we used the pruned-enriched
Rosenbluth method (PERM).31 This is a biased chain
growth algorithm, similar to the Rosenbluth-Rosen-
bluth32 method. In the latter, the bias induced by
avoiding double occupancy is compensated by a weight
factor which is basically of entropic origin. In the
present case, we have both a bias compensating factor
and a Boltzmann factor, the product of which tends to
fluctuate wildly if there is no perfect importance sam-
pling. These fluctuations are suppressed in PERM by
pruning low-weight configurations and cloning those
with high weight. Indeed, any bias can be employed in
PERM, as long as it can be compensated by a weight
factor. In previous simulations of diluted polymers we
use a Markov approximation called Markovian anticipa-
tion.33-35 In the present case we did not expect this to
be very useful because the main interactions are not
within one arm but between different arms. Thus, we
used instead a very simple bias where each arm tends

to grow preferentially outward (except for the simula-
tions for f ) 1 where we used of course Markovian
anticipation). The strength of this bias was adjusted by
trial and error. It decreased with the length of the arm
and increased with f. Details will not be given since they
are not very important, and working without this bias
would have increased the errors by only a factor ≈2, in
general.

A final comment is that it is easy to modify the basic
PERM algorithm given for example in the appendix of
ref 31 such that all f arms are grown simultaneously.36

This is done by having f growth sites x1, ..., xf. Chain
growth is made in PERM by calling recursively a
subroutine for each monomer addition. For multiarm
growth, we add an integer k ∈ [1, ..., f ] to the argument
list of this subroutine, such that a subroutine called
itself with argument k calls the next subroutine with
(k mod f ) + 1. In this way a monomer is added to each
arm before the next round of monomers is added.
Compared to a scheme where one arm is grown entirely
before the next arm is started, the main advantage is
that each chain grows in the field of all the others and
is thus, by the population control (pruning/cloning),
guided to grow into the correct outward direction. If
chains were grown one after the other, this bias would
be absent for the first chains which then would grow
into “wrong” directions, resulting in very low-weight
configurations.

3. Results
3.1. Partition Sums and γ-Exponents. One of the

outstanding features of chain growth methods such as
PERM is that they give estimates for the partition sum.
Indeed, these estimates are a basic part of the simula-
tions since the population control is based on these
estimates.

According to eq 3, we expect ZN,fµf N to approach a
power law const Nγf -1 at large N. One precise way to
estimate γf is to subtract a term af ln N from ln(ZN,fµf N)
and adjust the constant af such that the difference gives
a flat curve for large N, when plotted against ln N. This
then gives γf ) 1 + af. Alternatively, we could plot ln
ZN,f - ln ZfN,1 - af′ ln N against ln N, in which case a
flat curve is obtained when a′ ) γf - γ. We prefer both
methods over a least-squares fit, say, since they allow
directly to check visually for the presence of corrections
to scaling. If such corrections seem needed, one can
subtract them and obtain in this way the most reliable
and precise estimates of γf sremembering of course that
estimating a critical index involves an extrapolation and
is thus ill-posed, giving at best subjective error esti-
mates.

For either method we need precise estimates of the
partition sum of linear chains. We thus performed first
extensive simulations of linear (f ) 1) Domb-Joyce
chains, creating altogether ≈4 × 108 chains of length
N ) 8000. In Figure 1, we plot effective exponents
obtained from triple ratios26 Z aN

x Z bN
y /ZN. Here a and b

are chosen such as to minimize statistical and system-
atic errors,26 and powers x and y are fixed such that µ
and the overall normalization drop out. With a ) 1/3 and
b ) 5 we have

which is plotted against 1/N0.96. The fact that we find

γeff(N) ) 1 +
7 ln ZN - 6 ln ZN/3 - ln Z5N

ln(36/5)
(5)
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essentially a straight line (apart from odd/even oscilla-
tions due to the special structure of the cubic lattice)
indicates that the leading correction to scaling exponent
is ∆ ≈ 0.96, which is much larger than the value ∆ ≈
1/2 for generic self-avoiding walks, indicating that v )
0.6 is indeed close to the magic value. Our estimate is
therefore

This is in good agreement with the best previous
estimates26,37 but more precise. Using this estimate, we
obtain then

After having obtained a precise estimate for µ, we can
now discuss the results for stars. Results for a few
selected values of f are shown in Figure 2. We plot there
ln ZN,f + f N ln µ for both variants, i.e., the center singly
occupied or f times occupied. The latter gives smaller
values of ZN,f, but the difference is visible only for N )
2. For larger N both agree, except for f ) 80 and large
values of N where our sampling algorithm starts to
break down.

For a precise estimate of γf we of course did not use
plots like Figure 2, but we subtracted (γf - 1) ln N as
explained above. Then we see (Figure 3) that there are
nonnegligible corrections to scaling, but our arms are

long enough so that our estimates of γf are not affected
by them. Our final results, obtained by averaging over
both variants of the model, are shown in Table 1 and in
Figure 4. In Table 1 we also give additional information
such as the arm lengths and the total statistics. We also
list previous estimates for comparison. We see reason-
able agreement in general, although those previous
estimates which were quoted with error bars16 are off
by many standard deviations. We should add that the
simulations in ref 16 involved much shorter chains and
lower statistics.

Previous theoretical predictions of γf used ε ) 4 -
d-expansions6,7 and the cone approximation.38,39 The
latter assumes that each branch is confined to a cone
of space angle 4π/f and gives

As seen from Figure 4, this is not too far off, but it
definitely does not provide a quantitative fit to our data.
The best fit with a power law γf - 1 ∼ -(f - 1.5)z would
be obtained with z ≈ 1.68, but we do not claim that this
exponent has any deeper significance.

In contrast to the cone approximation which is basi-
cally heuristic and cannot be improved systematically,
ε-expansions have a firm theoretical basis. But the
expansion itself is at best asymptotic, and each term
gives a contribution to γf which is polynomial in f. Thus,
it cannot be used without resummation. Such resum-
mations have not yet been attempted for f f ∞. For
small f, results are given in refs 6 and 7 and are listed
in Table 1. They are in the correct order of magnitude,
but their precision is not sufficient to draw any firm
conclusion beyond the fact that the resummed ε-expan-
sion is obviously not in conflict with the Monte Carlo
data.

3.2. Coil Sizes. We measured only rms center-to-end
distances of the arms (end-to-end distances for f ) 1).
This was done “on the fly”; i.e., we did not store each
configuration and measure its properties in a second
step of analysis. The reason is that an off-line analysis
would have required very large files, and reading a
configuration from disk or tape would have been not
much faster than creating it from scratch. We neither
measured shape parameters nor radii of gyration, since
any such additional measurement would have slowed
down the analysis considerably and since the main

Figure 1. Effective exponents γeff(N) for linear (f ) 1)
“magical” Domb-Joyce polymers against 1/N0.96.

Figure 2. Logarithms of the partition functions ZN,f multiplied
by µf N. For each pair of close-by lines, the upper refers to singly
occupied centers, while the lower one has f monomers located
at the center.

γ ) lim
Nf∞

γeff(N ) ) 1.1573 ( 0.0002 (6)

µ ) 0.18812145 ( 0.00000003 (7)

Figure 3. Logarithms of the partition functions ZN,f multi-
plied by µf N, plus (1 - γf) ln N. For each pair of close-by lines,
the upper refers again to singly occupied centers, while the
lower one has f monomers located at the center.

γf - 1 ∼ -f 3/2 (8)
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purpose of the present work was to demonstrate the
efficiency of PERM and to study the main universal
properties of large stars.

As for γf, we first need a careful analysis of linear
chains to obtain precise estimates of ν and of the
amplitude A1. In Figure 5, we plot effective exponents
νeff(N) ) (ln 16)-1 ln[R8N

2 /RN
2 ], again vs 1/N0.96. We see

again a straight line (as in Figure 1), verifying again
that the correction to scaling exponent is close to 1.
Extrapolating to N f ∞, we find ν ) 0.58767(20).
Together with previous estimates reviewed in ref 35,
this gives our best estimate

Notice that this is more precise than the field theoretic
estimates obtained from the ε-expansion.4 The resulting
amplitude is then

To obtain the amplitudes Af for stars, we assume the
value of ν as given above. We can then plot either

RN,f
2 /N 2ν vs N (which gives Af directly) or RN,f

2 /RN
2 vs N,

which gives Af /A1. To check for systematic corrections,
we did both. Some typical curves obtained with the first
method are shown in Figure 6. For each value of f we
see two curves, one for each variant of the model: the
upper curve is always that with the center f times
occupied, and the lower one corresponds to a singly
occupied center. For large values of f (f g 40) we see
large fluctuations, indicating the limit where our sam-
pling breaks down. Otherwise, we see large corrections
to scaling, but they all are dominantly ∼1/N, i.e.,
analytic corrections, and they have rather small influ-
ences on our final estimates of Af.

These estimates are given in Table 1 and plotted in
Figure 7. We show indeed the ratios Af/A1, to facilitate
the comparison with previous estimates. The best previ-
ous estimates are those of Zifferer20 and are also given
in Table 1. We see very good agreement, even if most of
the values of ref 20 are outside our error bars. The data
of Zifferer were obtained from simulations on the
tetrahedral lattice, and they indicate that the ratios Af/
A1 are indeed universal. In ref 22, stars with up to 80
arms were simulated off-lattice by means of molecular
dynamics. But it seems that the stars with N ) 100 were
not equilibrated, at least for f ) 1 (see Table 1 of ref

Table 1. Main Results

f N runs γf previous estimates Af/A1 previous estimates

1 8000 486 × 106 1.1573(2) 1.1575(6)a 1.0
2 4000 71 × 106 1.1573 1.0614(5) 1.0628f

3 4000 83 × 106 1.0426(7) 1.089(1)b 1.1123(5) 1.1139;f 1.128g

4 4000 142 × 106 0.8355(10) 0.879(1)b 1.1553(6) 1.1581f

5 4000 114 × 106 0.5440(12) 0.567(2)b 1.1939(8)
6 3000 73 × 106 0.1801(20) 0.16(1);b 0.14c 1.2295(9) 1.2322;f 1.265g

7 2500 73 × 106 -0.2520(25) -0.33, -0.20c 1.2626(11)
8 2300 59 × 106 -0.748(3) -0.88, -0.60;c -1.00d 1.2934(12) 1.2951f

9 2150 48 × 106 -1.306(5) -1.51, -1.01c 1.3225(14)
10 2000 67 × 106 -1.922(7) 1.3494(16) 1.3519;f 1.424g

12 1700 73 × 106 -3.296(9) -3.35;d -3.4(3)e 1.4014(17) 1.4017f

14 1400 66 × 106 -4.874(9) -4.94d 1.4481(19)
16 1200 96 × 106 -6.640(10) -5.90d 1.4917(24)
18 1100 96 × 106 -8.575(12) -8.12;d -8.9(2)e 1.532(3)
20 1000 130 × 106 -10.66(2) -11.33d 1.574(4) 1.660g

24 800 147 × 106 -15.32(4) -18.13d 1.643(5)
30 500 316 × 106 -23.40(6) 1.735(7) 1.896g

40 300 880 × 106 -39.55(13) 1.883(14) 2.036g

50 120 1194 × 106 -59.2(2) 1.95(2) 2.208g

60 80 1712 × 106 -81.5(4) 2.04(3)
70 61 1944 × 106 -108.0(7) 2.13(4)
80 45 1966 × 106 -135.7(13) 2.16(6)

a Reference 37, Monte Carlo. b Reference 16, Monte Carlo. c Reference 6, ε-expansion. d Reference 17, Monte Carlo. e Reference 19, Monte
Carlo. f Reference 20, Monte Carlo (tetrahedral lattice). g Reference 22, molecular dynamics (off-lattice; values for N ) 50).

Figure 4. Exponents γf vs f. The full line is just a polygon
connecting the points, and the dashed line is a fit with the
large-f behavior as predicted by the cone approximation, eq 8.

ν ) 0.58765 ( 0.00020 (9)

A1 ) lim
Nf∞

RN
2 /N2ν ) 0.8038 ( 0.0005 (10)

Figure 5. Effective exponents νeff(N) for linear “magical”
Domb-Joyce polymers against 1/N0.96.
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22). Therefore, we list for comparison only the data for
N ) 50. They are systematically larger than our results
and those of ref 20, and the discrepancy increases with
f. This suggests that even these simulations had not
reached equilibrium.

The most cited predictions for Af/A1 are from a
heuristic blob model.9,10 It gives

which is in gross violation with our data. The fact that
this Daoud-Cotton model gives a too strong swelling
with f is well-known.20,40 Our data cannot be fitted by a
pure power law, but asymptotically (for f f ∞) they tend
roughly to Af /A1 ≈ 0.78f 0.235. Again, we do not expect
this to be the true asymptotic behavior, but it provides
at least a useful guide for extrapolations.

Renormalization group (RG) calculations of star poly-
mer sizes have been performed in refs 11 and 12, but it
was already pointed out in refs 14 and 13 that these
have difficulties in describing the large-f behavior.
Using their own simulations to fix some of the param-
eters in an improved RG calculation, Lue and Kiselev13,14

were able to fix these problems in the sense that their
RG calculation described perfectly the behavior of the
penetration function.13,14 Unfortunately, they did not
give predictions for Af, so we cannot make a detailed
comparison with our data. But we should point out that

refs 13 and 14 also obtained much less swelling with f
than predicted in refs 9, 11, and 12.

4. Discussion

We have demonstrated that chain growth methods
with resampling, and the PERM algorithm in particular,
are able to produce very precise Monte Carlo data for
star polymers with many arms. Using the Domb-Joyce
model on the simple cubic lattice, we combined this with
absence of leading corrections to scaling and with the
possibility to connect arbitrarily many arms to a point-
like core. This allowed us to test conjectured scaling
laws for the entropic critical exponents γf and for the
f-dependent swelling of single arms. In principle, we
could have measured during these simulations also
other observables like monomer densities, star shapes,
radii of gyration, etc.

Our most interesting results are for the exponents γf.
All previous simulations were compatible with the
predictions from the heuristic Daoud-Cotton model, but
they were not very precise. There are also no good
experimental results for these exponents, although they
are fundamental for the entropy (and thus also for the
free energy) of star polymers in good solvents. Our
results show that these predictions are qualitatively
correct (γf is negative and diverges as -f R, but the
exponent R clearly disagrees with the prediction).

We also disagree with the prediction of the Daoud-
Cotton model for the sizes of star polymers, and indeed
the disagreement for the end-to-center distances is
larger than for γf. They increase with f much slower than
predicted. But this finding is not entirely new; it had
been observed previously in Monte Carlo simula-
tions.20,40 Our data are compatible with these, but more
precise and extending to larger values of f. Disagree-
ment with the Daoud-Cotton prediction for star poly-
mer sizes was also found in some experiments,41 but
there are also repeated claims in the literature22,42 that
experiments are compatible with it. We have no good
explanation for the latter, except that the interpretation
of experiments for diluted solutions might be less easy
than anticipated.

With slight modifications of the algorithm one can
also study related problems like stars center-absorbed
to surfaces,43 stars confined between two planar walls,44

heterostars,7,40 interactions between two star poly-
mers,13,38,45,46 or star polymer-colloid interactions.47 We
expect that PERM will be more efficient than previous
algorithms (not the least because it gives immediately
precise entropy estimates), in particular if applied to
lattice models. PERM can also be applied off-lattice,31,48

but its advantage is in general less pronounced there.
We hope to present simulations for some of these
problems in the near future.
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