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Recently the blood oxygenation level–dependent (BOLD)-
related T 2* of myocardium was derived as an analytical function
of intracapillary blood volume, blood oxygenation, and nuclear
spin diffusion. The basis of this approach was to approximate
the diffusion-induced field fluctuations a nuclear spin is sub-
jected to by strong collision dynamics, i.e., the field fluctuations
are uncorrelated. The same analysis is now performed for spin
echo experiments that gives myocardial T 2 as a function of the
parameters above and the echotime. An analytical relationship
between T 2 and T2* relaxation is derived. The dependence of T 2

on diffusion, echo time, and blood oxygenation is congruent
with simulation and experimental data. Magn Reson Med 42:
1004–1010, 1999. r 1999 Wiley-Liss, Inc.
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We recently presented an analytical approach in which the
blood oxygenation level–dependent (BOLD)-related trans-
verse relaxation time T2* of a free induction decay (FID)
was derived as a function of tissue parameters as relative
intracapillary blood volume and intracapillary blood oxy-
genation (1). The vascular architecture analyzed was that
of myocardium. The basis for this approach was the strong
collision approximation of the dynamics of field fluctua-
tions a nuclear spin is subjected to while diffusing in the
inhomogeneous pericapillary magnetic field. We could
demonstrate (1) that the model predicts data of simulations
well (2), experiments in animals (3), and measurements in
humans (4,5). In this paper we extend our model to spin
echo experiments, i.e., the transverse relaxation time T2 is
derived as a function of tissue parameters and echo time.
The analysis is performed for a single and a biexponential
approximation of the FID. The results are compared with
simulation experiments of Kennan et al. (2) and experimen-
tal data of Atalay et al. (3). Finally, a general relation
between T2* and T2 is derived.

TISSUE MODEL

The type of tissue model we used for our analysis was
recently introduced by us (1). The only vessel type consid-
ered are capillaries, because of their dominating volume
contribution [.90% vessel volume (6)] in myocardium.
Capillaries are considered as parallel cylinders (radius Rc)
with a regular intercapillary spacing. Instead of taking spin
diffusion in the whole tissue into account, we only con-
sider one capillary with its concentric supply area (radius
Rs), which implies that the relative intracapillary volume
fraction is RBV 5 (Rc/Rs) 2. This Krogh model implies the
introduction of reflectory diffusive boundary conditions at
Rs. Because the capillary wall is almost impermeable on
the time scale of transverse spin relaxation (7) one assumes
reflectory boundary conditions at Rc as well. Due to the
length of the capillaries (.400 µm) spin diffusion in the
magnetic field gradient parallel to the capillary axis does
not contribute much to spin relaxation. Hence, it is suffi-
cient to consider 2D spin diffusion between two concentric
cylinders with radius Rc and Rs. We only consider the
extravascular fraction of spins due to its dominating contri-
bution [.90% (8)]. The percapillary magnetic field is
induced by paramagnetic intracapillary hemoglobin. The
precession frequency of this field around the capillary
(cylindrical coordinates x 5 (r, f)) is determined according
to basic magnetostatics as

v(r, f) 5 2dv · Rc
2 cos (2f)/r2, [1]

with the characteristic equatorial frequency shift of a
magnetized cylinder, dv 5 0v(Rc, 0) 0 5 2pg · DM. The
term DM 5 Dx · B0 · sin2(u) is the difference of extra- and
intracapillary magnetization (cgs units), which is induced
in an external magnetic field B0 due to the susceptibility
difference Dx. u is the angle between capillary axis and
external field, which is assumed to be 90° throughout this
paper.

MATHEMATICAL ANALYSIS

Free Induction Decay in the Strong Collision Approximation

We recently presented a theory (1) in which the BOLD-
related FID is derived as a function of microcirculatory
parameters in myocardium. The decisive step was to
replace the diffusion-induced field fluctuations that influ-
ence a precessing nuclear spin, by a strong collision
dynamics. This was justified, because the correlation time
of these field fluctuations was much shorter than the

1II. Medizinische Universitätsklinik Mannheim/Heidelberg, Mannheim, Ger-
many.
2HLRZ c/o Forschungszentrum Jülich, Jülich, Germany.
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BOLD-related relaxation time. In this paper only essentials
are repeated.

The time evolution of the local transverse nuclear
magnetization (polar notation: m 5 mx 2 imy ) is deter-
mined by the Bloch-Torrey equation (diffusion coeffici-
ent D)

­tm(x, t) 5 (D=2 1 i · v(x))m(x, t), [2]

which, after formal time integration, provides

m(x, t) 5 exp [(D=2 1 i · v(x)) · t]m(x, 0), [3]

and for the mean magnetization in the tissue volume V

M(t) 5
1

V e
V

dx exp [(D=2 1 i · v(x)) · t]m(x, 0) [4]

The correlation time of field fluctuations a diffusing nuclear
spin is subjected to is (1)

t 5 (Rc
2/4D) · 0 ln RBV 0/(1 2 RBV), [5]

for the tissue model considered above. This correlation
time is smaller than 6 msec when realistic values for
myocardial tissue are inserted (RBV 5 5 2 10%, Rc 5 2.75
µm, D 5 1 µm2/msec), i.e., smaller than the myocardial
relaxation time T2* . 30 msec, and, hence, much smaller
than the BOLD-related contribution to T2*. This implies
that on a time scale on which significant alterations of
transverse magnetization occur, the magnetic field fluctua-
tions are stochastically independent. Uncorrelated field
fluctuations may be considered as a stationary Markov
process the generator of which is

D 5 l(P 2 id), [6]

(9,10) where P denotes the projection operator onto the
functional space generated by the probability density
function of the steady state p(x) of this dynamic process
[in this case p(x) is identical with the spin density func-
tion (1)], i.e., Pf(x) 5 p(x) · eV dx f(x) and id denotes
the identity operator. Such an approach is refered to
as strong collision approach. The parameter l is
the fluctuation frequency. Self consistency of the
strong collision approximation implies that l 5 t21. Re-
placement of the diffusion operator D=2 in Eqs. [3] and [4]
by the strong collision operator D allows the analytical
determination of the Laplace transform M̂(s) 5

e0
`

dt e2stM(t) as

M̂(s) 5 (1 1 RBV) · (Î(s 1 t21)2 1 dv2RBV2

1 RBVÎ(s 1 t21)2 1 dv2 2 t21(1 1 RBV))21 [7]

The relaxation time of the free induction process is deter-
mined according to the mean relaxation time approxima-
tion [11] as T2* 5 M̂(0), i.e.,

T2* 5 t · (1 1 RBV) · ([Î1 1 (tdv · RBV)2 2 1]

1 RBV · [Î1 1 (tdv)2 2 1])21, [8]

Spin Echoes in the Strong Collision Approximation

In this section we will derive the time course of the
transverse magnetization, which is subjected to a spin echo
sequence. It has to be stressed that the derived relations
between reversible and irreversible spin dephasing only
depend on the strong collision assumption and do not
assume any special form of geometry or form of the
inhomogeneous field. A simple spin echo sequence con-
sists of a 90° pulse with a subsequent 180° pulse after t/2.
The echo is gained after the echo time t.* After each pulse
there is a simple free induction relaxation of the transverse
magnetization, however, the phase reflection induced by
the 180°-pulse refocuses coherent dephasing at t, i.e., the
loss of transverse magnetization at t is due to incoherent,
i.e., irreversible dephasing.

In the strong collision approximation the time evolution
of the local magnetization at t/2 before the 180° pulse is
given by

m(x, t/2) 5 exp [Gt/2]m(x, 0), [9]

where we introduced the time evolution generator of the
FID, G 5 D 1 i · v(x) (Eq. [6]). The 180° pulse induces a
reflection of the phase which mathematically leads to a
transition of m(x, t/2) to its complex adjoint

m(x, t/2)
180° pulse

≤≤≤= m*(x, t/2) 5 exp [G*t/2]m*(x, 0) [10]

After the 180° pulse time evolution is given by

m(x, t/2 1 Dt) 5 exp [GDt] m*(x, t/2)

5 exp [GDt] exp [G*t/2]m*(x, 0) [11]

and at the echo time t

m(x, t) 5 exp [Gt/2] exp [G*t/2]1 [12]

where we exploited that the initial magnetization is homo-
geneous and normalized to 1, i.e., m(x, 0) 5 1, with the
function 1 ; 1.

*We denote the echo time as t instead of the commonly used TE to simplify the
editing of the mathematical formulas.
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The mean magnetization in the tissue volume V at the
echo time is given by

MSE(t) 5
1

V e
V

dVm(x, t)

5
1

V e
V

dV exp [Gt/2] exp [G*t/2]1. [13]

Equations [12] and [13] and the structure of the operators
G and D imply that

d

dt
MSE(t) 5

1

V e
V

dV exp [Gt/2][G/2 1 G*/2] exp [G*t/2]1

5
1

V e
V

dV exp [Gt/2]D exp [G*t/2]1

5
1

V e
V

dV exp [Gt/2]
1

t
(P 2 id) exp [G*t/2]1

5
1

t

1

V 1eV
dV exp [Gt/2]12 1

V 1eV
dV exp [G*t/2]12

2
1

t

1

V 1eV
dV exp [Gt/2] exp [G*t/2]12

5
1

t
M(t/2) · M*(t/2) 2

1

t
MSE(t)

5
1

t
0M(t/2) 0 2 2

1

t
MSE(t), [14]

where the function M(t) denotes the time course of
magnetization during the free induction decay. Equation
[14] is a simple first order differential equation which is
solved by

MSE(t) 5 e2t/t 1 e2t/t
1

t
e

0

t
djej/t0M(j/2) 0 2 [15]

Equation [15] defines the exact time course of magnetiza-
tion MSE(t) after the echo time t when the strong collision
model is assumed. The determination of T2 from Eq. [15]
requires the knowledge of the free induction decay of
magnetization M(t). When a single exponential decay of the
FID is assumed, i.e., M(t) < e2R2*t, Eq. [15] becomes

MSE(t) 5 e2t/t 1 e2t/t
1

t
e

0

t
djej/te2R2*j

5 e2t/t 1 e2t/t
1

1 2 tR2*
(e(1/t2R2*)t 2 1)

5
t

1 2 tR2*
(t21e2R2*t 2 R2*e2t/t) [16]

When a biexponential FID is assumed, i.e., M(t) 5
f1e2G1t 1 f2e2G2t (for the derivation of fi and Gi see Appen-
dix), Eq. [15] provides MSE as

MSE(t) 5 e2t/t(1 1 C1 1 C2 1 C3), [17]

with

C1 5
f 1

2

1 2 tG1
(e(1/t2G1)t 2 1) [18]

C2 5
f 2

2

1 2 tG2
(e(1/t2G2)t 2 1) [19]

C3 5
2f1f2

1 2 tG
(e(1/t2G)t 2 1), [20]

where G 5 (G1 1 G2)/2.

APPLICATIONS

Relaxation Rate and Echo Time

When T2 or the corresponding rate R2 is determined from a
spin echo (multiecho) experiment one assumes a single
exponential decay of the magnetization MSE < e2t R2 at the
echo time (or between two echoes at the interechotime) t,
which leads to (see Eq. [15])

R2 5
2ln MSE(t)

t
[21]

Figure 1 demonstrates for different diffusion coefficients
the relaxation rate R2 determined from Eq. [21] as a
function of the echo time. A single exponential and a
biexponential approximation of the FID in Eq. [15] is
analyzed (Eqs. [16] and [17]). One obtains that with increas-
ing echo time the relaxation rate becomes independent
from echo time and that this asymptotic value is the same
for the single and biexponential FID approximation. Increas-
ing the diffusion coefficient makes this relation evident for
shorter echo times. At short echo times the rates are
considerably smaller when a biexponential FID is assumed
and these data agree better with simulation experiments.

The explanation is given in Fig. 2, where the magnetiza-
tion decay (Eq. [15]) at the echo time was determined either
for a bi- or a single exponential FID approximation in Eq.
[15] for two diffusion regimes. For long echo times the
magnetization-echo time curves are almost identical for
both approximations. However, when short echo times or
interecho times are considered there is a considerable
difference (Fig. 2b). In the short echo time range
(1 2 MSE(t) 9 1) the relaxation rate determined from Eq.
[21] may be approximated as R2 5 2ln MSE(t)/t <
(1 2 MSE(t))/t, i.e., Fig. 2b demonstrates that R2 obtained
from a single or a biexponential FID differs by more than
100%. This and the comparison with simulation data (Fig.
1) implies that the determination of the transverse relax-
ation rate requires a biexponential approximation of the
FID when short (inter-) echo times are considered.
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Comparison With Simulations of Kennan et al.

Kennan et al. (2) determined R2* and R2 from simulations of
spins diffusing within a quadratic box containing a vessel
inside, which was filled with a paramagnetic contrast
agent. The orientation of the vessel axis was perpendicular
to the external field (u 5 90°) and the length of the box was
that of the intercapillary distance. The rate R2* was deter-
mined from a FID and R2 from spin echo (multi echo)
experiments with varying echo time. We could recently
demonstrate that our analytical model (1) predicted well
the R2* data of FID simulations. In this section we will
compare the predictions of our model with the simulations
of spin echo experiments.

In one part of his study, Kennan et al. considered R2 and
R2* as a function of the diffusion coefficient. When MSE(t) is
determined according to Eq. [16], i.e., we assume a single
exponential decay of the FID (M(t)), the calculated data of
R2 (Eq. [21]) are in close congruence with the simulation
data (Fig. 3). The dependence of R2 on the echotime is also
well reflected. The simulation data and our results demon-
strate similar characteristic features of the dependence of
R2 on the diffusion coefficient.

● there is a single maximum
● with increasing diffusion coefficient (small correla-

tion times) R2 becomes independent from the echo
time

● R2 < R2* when the diffusion coefficient increases. This
is the the motional narrowing limit (t = 0), i.e., R2 <
R2* < t · RBV · dv2/2 (Eq. [8], Fig. 3 and Ref. 1).

In another set of simulations Kennan et al. considered
the dependence R2(D) for different vessel sizes (Fig. 4).

When R2 is determined according to Eq. [21] there is again a
close congruence between data obtained from simulations
and those predicted by our model. The increase of the
vessel size leads to a shift of the R2(D) curve to the right,
which is explained by the increase of the correlation time
(Eq. [5]).

Comparison With Experimental Data

Atalay et al. determined T2* (12) and T2 (3) in isolated rabbit
hearts that were perfused with a red cell suspension at
various oxygenation levels. Because experiments were
performed under cardioplegic conditions and after maxi-
mal vasodilation the oxygenation gradient along the capil-
lary axis was negligible as was recently estimated by us (1).
This implies that the intracapillary oxygenation of hemoglo-
bin is almost that of the perfusate. The authors found
empirical equations for the dependence of R2* and R2 on the
relative oxygen saturation of hemoglobin Y as demon-
strated in Fig. 5. The experimental setup of the horizontal
imaging system and the heart preparation (12) suggests an
almost perpendicular intersection of the capillary axis and
the external field. For comparison with our theory we
determined R2* from Eq. [8] and R2 from Eq. [21]. The
equatorial frequency shift dv (Eqs. [1] and [8]) was deter-

FIG. 1. Transverse relaxation rate R2 as a function the echo time TE
obtained from Eq. [21] and Eqs. [15], [16], and [17]. The difference
between intra- and extracapillary magnetization (5Dx · B0) was
assumed to be 1.6 mgauss, which is the valid for deoxygenated blood
(Dx 5 8 · 1028 for hematocrit 5 40%) in an external field of B0 5 2T.
A single (solid line) and a biexponential (dashed line) approximation
of the FID is inserted in Eq. [15]. Three different diffusion regimes
(coefficient D) are considered for a relative intracapillary blood
volume RBV 5 5% and a capillary radius Rc 5 2.5 µm. The squares
denote relaxation rates of simulated spin-echo experiments (D 5 1
µm2/ms, RBV 5 5%) for different echotimes (TE 5 50, 20, 5 msec)
and are taken from Ref. 2. Note that for short echo times, the
predictions of the model are closer to simulation data when a
biexponential decay of the FID is assumed.

FIG. 2. a, b: Magnetization MSE as a function of the echo time TE
according to Eq. [15] for two different diffusion regimes. As in Fig. 1 a
single (solid line) and a biexponential (dashed line) FID approxima-
tion is inserted in Eq. [15]. b: a magnification of a for the range of short
echo times.
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mined as dv 5 2pg ? Dx0(1 2 Y) · B0 where g denotes the
gyromagnetic ratio, Dx0 5 8 · 1028 is the susceptibility
difference for complete deoxygenated blood (Y 5 0), and
B0 5 4.7 T is the external magnetic field. Because the
authors state that the relaxation rate R2 was independent
from echotime (range: 18–1000 msec) when determined
according to Eq. [21] it is justified to describe the magneti-
zation decay MSE(t) by Eq. [16] (Fig. 1). Because Atalay et al.
only gave the range of echotimes they used in their
experiments we assumed an echotime of 23 msec that
appears to be reasonable to detect also fast relaxation in the
presence of low blood oxygenation. The relative intracapil-

lary blood volume (RBV) was assumed to be 10%, which is
a realistic value for a dilated microvascular system (8).
Because our theory describes the BOLD-related part of
transverse relaxation, the offset of the empirical curves at
100% oxygen saturation (R2*(Y 5 1), R2(Y 5 1)) was added
to our theoretical curves. As the empirical curves, the
R2*(Y) and R2(Y) curves obtained from our model almost
run parallel (Fig. 5), and there is evident similarity be-
tween the empirical and analytical function.

General Relation Between Irreversible and Reversible Spin
Dephasing and Correlation Time

In this section we will derive a general relation between T2

and T2* when the strong collision approach is applied. In
this section above the relaxation time (rate) was deter-
mined from a single echo time t or interecho time when a
multiecho sequence is applied. From a more theoretical
point of view T2 should be obtained from a signal echo time
curve, i.e., many single spin-echo experiments with differ-
ent echotimes are required. In this case one cannot apply
Eq. [21] for determination of the transverse relaxation time
(rate). Instead the best single exponential approximation of
magnetization decay is required MSE(t) < e2t/T2, which
according to the mean relaxation time approximation
(11) is

T2 5 e
0

`
dt MSE(t), [22]

FIG. 3. Relaxation rate as function of the diffusion coefficient D for a
free induction decay (R2*, FID) and spin-echo experiments (R2, SE).
For comparison with simulation data, the tissue parameters were
taken from Ref. 2 as: relative intracapillary blood volume RBV 5 5%,
capillary radius Rc 5 2.5 µm, intracapillary magnetization of 1.6 mG
(dv 5 269 rad · sec21). The data from the model (solid lines) were
obtained from Eq. [8] (FID) and Eqs. [16] and [21] (spin echo). Two
echo times were analyzed and compared with simulation curves
(square/triangle: spin-echo simulation data for an echo time of 50/20
msec). Note that with increasing diffusion coefficient (decreasing
correlation time) both, the relaxation rate of the FID and those of the
spin-echo experiments approach the motional narrowing limit, i.e.,
R2 < R2* < t · RBV · dv2/2.

FIG. 4. Relaxation rates of free induction decay (R2*) and spin-echo
experiments (R2, echo time TE 5 50 msec). The capillary radius is
2.5 µm (X, gradient echo; square, spin-echo simulation data) and 7.5
µm (*, gradient echo; circle, spin-echo simulation data). Solid lines
are obtained from the model.

FIG. 5. Myocardial R2* and R2 as a function of the relative oxygen
saturation of hemoglobin Y. The dashed curves were obtained from
empirical equations that Atalay et al. (3) found in red cell–perfused
rabbit hearts at 4.7 T from gradient-echo and spin-echo experiments.
The solid curves were obtained from Eq. [8] (R2*(Y)) and Eqs. [16] and
[21] (R2(Y)). The relative intracapillary blood volume was assumed to
be 10%, which is reasonable for a dilated microvascular system (8),
and the capillary radius was assumed to be 2 75 µm, which is a
realistic value for a capillary in myocardium (13). Note the congru-
ence between the empirical curves and those obtained from the
model.
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Insertion of MSE(t) from Eq. [15] gives

T2 5 e
0

`
dt e2t/t 1 e

0

`
dte2t/t 11t e

0

t
djej/t0M(j/2) 0 22

5 t 1 2 · 0M̂ 02(0), [23]

where we applied the integration, translation, and similar-
ity theorem of Laplace transforms. The further evaluation
depends on the approximation of the FID, i.e., M(t). When
we assume a single exponential decay, i.e., M(t) < e2t/T2*
we obtain

T2 < t 1 T2*, [24]

that reveals a very simple relationship between T2 and T2*.
It has to be stated the derivation of the relation 24 is based
on the single exponential form of the FID of tranverse
magnetization M. This appears to be a reasonable assump-
tion as long as the T2 relaxation is obtained from long
echotimes. However, when T2 is obtained from measure-
ments at short echotimes a more precise description of the
FID is necessary.

The relation 24 reveals some fundamental properties
between T2 and T2*. In the limit of very long correlation
times t = ` (static dephasing regime) one obtains

T2 : T2* [25]

which reflects the fact that in this limit there is only a
minor portion of irreversible dephasing of transversal
polarized spins. In the opposite case, i.e., t = 0 (motional
narrowing limit) the relation 24 becomes

T2 < T2* [26]

i.e., the most part of dephasing is irreversible.

DISCUSSION

In this paper we demonstrated that our analysis of BOLD-
related transverse relaxation can be extended from the free
induction decay to spin-echo experiments. A general rela-
tion between irreversible and reversible spin dephasing
was obtained.

Strong Collision Approach

The base of our analysis is the strong collision approach of
the dynamics of the BOLD-related field fluctuations, which
is justified according to the relation of correlation and
relaxation time (t 9 T2,BOLD*) in myocardium. The interval
of correlation times, which satisfy the strong collision
condition contains that for which the motional narrowing
condition t · Î7Dv28 9 1 is valid (7Dv28 5 variance of field
fluctuations) because in this limit R2* 5 t · 7Dv28, i.e. R2*t 9
1. The opposite, however, is not true as was recently
demonstrated (1).

Furthermore the model presented here also contains the
static dephasing regime of spin relaxation as a special case,

because static dephasing is the asymptotic state of both
dynamics, the diffusion and the strong collision generated
field fluctuations. This implies that the strong collision
approach represents a two side approximation of spin
relaxation. It interpolates relaxation rates coming from
very long (static dephasing regime) and short (t 9 T2,BOLD)
correlation times.

Kiselev and Posse (14,15) recently presented analytical
models to describe transverse relaxation for very long and
short correlation times. The first extends the static dephas-
ing regime by consideration of spin diffusion within a local
linear field gradient (14,15). The other model, which is
used for the description of the fast motion regime, is a
perturbation approach in the local magnetic fields (14).
The data provided by these models are very close to
simulation data of Boxerman et al. (16). The vascular
network Kiselev and Posse focused on was that of the
brain. This implies that the BOLD effect around larger
vessels (veins) has to be considered, i.e., approximations
near the static dephasing regime are important. In myocar-
dium, however, the relative volume of the venous system is
negligible (6). On the other hand, we have recently shown
(1) that the motional narrowing condition is not fulfilled in
the capillary system of myocardium which hampers the
application of perturbation approaches. One of our future
goals is to apply our model to a cerebrovascular network
and to compare our analytical results with those of Kiselev
and Posse.

Determination of Relaxation Time

We could derive simple relations for the relaxation time or
rate as a function of the echo time. It could be demon-
strated that for very short echo times (interecho times) a
biexponential approximation of the FID leads to rates,
which are closer to simulation data.

A general relation between T2 and T2* was obtained
under the assumption that T2 is obtained from a signal
(magnetization) echo time curve. It has to be stressed that
the simple relation 24 is only valid for the BOLD-related
part of transverse relaxation, i.e., relaxation is induced by
field fluctuations with a single correlation time. However,
in tissue spin dephasing is induced by field fluctations, the
dynamics of which is a result of a complex superposition of
single processes having their own correlation times.

APPENDIX: BIEXPONENTIAL APPROXIMATION OF
THE T2* RELAXATION

The generalized moment expansion represents an algo-
rithm to approximate a relaxation time curve M(t) by a sum
of exponentials (10,11), M(t) < Sn51

N fn · exp (2 tGn). The
function and its approximation have the same statistical
moments. High-frequency moments describe the short
time behavior and are the jets of the Taylor expansion of
M(t), i.e., µn 5 M(n)(0). Low frequency moments describe
the long time evolution of M(t) and are µ2n 5 1/(n 2 1)!
e0

`
dt tn21M(t), i.e., µ2n 5 (21)n21/(n 2 1)! M̂(n21)(0),

where M̂(s) denotes the Laplace transform of M(t). When a
biexponential approximation M(t) < f1 exp (2tG1) 1
f2 exp (2tG2) is applied which reproduces 2 high- and 2
low-frequency moments the coefficients and rates are
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determined from f1G1
m 1 f2G2

m 5 µm with 22 # m # 1. These
moments are

µ1 5 0, [27]

µ0 5 1, [28]

µ21 5
(1 1 RBV)t

Î1 1 (tdvRBV)2 2 1 1 RBV(Î1 1 (tdv)2 2 1)
, [29]

µ22 5 µ21
2 · (1 2 k), [30]

with k 5 1 2 (1 1 RBV)21 ? ([1 1 (tdvRBV)2]21/2 1 RBV [1 1
(tdv)2]21/2). Equation [27] follows from Eqs. [3] and [4], Eq.
[28] from normalization of magnetization (M(0) 5 1). The
parameters of the bi-exponential approximation are then
obtained as

G1,2 5
µ21 6Îµ21

2 2 4µ21
2 k

2µ21
2 k

5 µ21
21

1 6 Î1 2 4k

2k
[31]

f1,2 5 6G2,1 · (2µ21)
k

Î1 2 4k

5
1

2 11 7
1

Î1 2 4k2 [32]
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