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Reaction—diffusion description of biological transport processes
in general dimension
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We introduce a reaction—diffusion system capable of modeling ligand migration inside of proteins
as well as conformational fluctuations of proteins, and present a detailed analytical and numerical
analysis of this system in general dimension. The main observable, the probability of finding the
system in the starting state, exhibits dimension-dependent as well as dimension-independent
properties, allowing for sharp experimental tests of the effective dimension of the process in
question. We discuss the application of this theory to ligand migration in myoglobin and to the
description of gating fluctuations of ion channel proteins.1896 American Institute of Physics.
[S0021-960606)50805-4

I. INTRODUCTION necessary for a deeper insight into protein-internal fluctua-

Several biological proteins have their active site not Ontlons and their effects. Understanding the ligand migration

their surface but, rather, buried deep inside the protein maplfotﬁisji;:‘g;i{g;ilritqu:fﬁ ﬁ gﬁ;eq:ﬁtea determination
trix. A central example are heme proteins where the ligand, y 9 path.

small gas molecule such as 6r CO, has to migrate through _Experimental_ studies of this process have employed a
the protein matrix in order to reach its binding site. The Va"ety of techniques. One of the oldest, and still most

motion of a ligand within a protein matrix is, therefore, awidely used, of these is the technique of flash photolﬁ/sis.

process of fundamental biological importance. Both theli9ands bound to the heme site are separated by a pulse of

ligand binding and the ligand migration processes in myoJaser light. The numbeN(t) of unrecombined ligands at

globin have been studied extensiv&ly,but a complete un- timet>Q is then monitored. In some cases, rebinding occurs
derstanding of either is still lacking. almost |n'1med|aFer. In othgrs, the ligand wa_m@ers _through
Early work! already made it clear that the problems in- the protein matrix for a while before recombining with the
volved were complicated, and that both ligand migration and1€me group. In the usual glycerol-water solvent, the latter
binding kinetics are nontrivial. For example, both x-ray dif- Process requires temperatures above roughly 170 K; below
fraction studies and molecular dynamics simulatfons- that, the solvent'sand possibly the protein'gjlass transition
vealed that ligand migration could not occur within a staticfreezes out the necessary conformational fluctuations. We
protein in an “average” conformation—fluctuations are es-note also that the ligand rebinding process per se appears to
sential to open voids large enough through which the ligande coupled to protein relaxation proces$é.
can travef Other complications include the ligand affecting ~ When ligand migration does occur, it is typically seen to
the medium through which it travels, anisotropy and inho-exhibit at~? behavior for a range of temperature and time
mogeneity of the protein matrix, and solvent interactionsscales, before crossing over to an exponential at longer
with the protein. times!! Because the probability of return to the starting point
Because of the protein’s inhomogeneity, it is reasonablén a 1d random walk falls off a2 the observed behavior
to suppose that voids occur only in preferred locations. Sincéas been taken as an indication that ligand migration in myo-
the ligand cannot leave a site until a conformational fluctuaglobin could be a one-dimensional diffusion procEss.
tion opens a nearby void, one could conclude that the inter- In a previous papér'*we showed that this conclusion
nal ligand path is effectively one-dimensional. By one-is incorrect for a number of reasons. First of all, the behavior
dimensional, we mean that the ligand always retraces itsf the observabldN(t) is different from the probability of
previous path when it reverses its direction of motion. How-return to the origin; see also Sec. Il of this paper. More
ever, whether the actual ligand path in myoglobin is one- oimportantly, however, modeling ligand migration through the
higher-dimensional has not yet been resolved. On the othqrotein matrix as diffusion in @-dimensional shell and us-
hand, the experimentally obtained timhé&émperaturé;* and  ing boundary conditions appropriate for the actual biological
pressurédependencies of ligand diffusion can be interpretedsituation, we find that the falloff foN(t) is t 2 during
and understood correctly only with this information. It is also intermediate timeindependentf space dimension. We pro-
posed a new, clear-cut experimental test, capable of distin-
E-mail: walter.nadler@uni-tuebingen.de guishing  higher-dimensional ~ from  one-dimensional
YE-mail: dis@physics.arizona.edu behavior—the presender absenceof a plateau region be-
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tween the algebraic decay regime and the exponential decaljtions corresponding to biological parameters, and find the
regime. This may already have been observed in the firsippearance of the plateau region in dimensions greater than
extensive published study of the problénimdicating that the  one. We complement these numerical studies with an analyti-
diffusion path is actually three dimensional. cal proof of thet "2 decay in any dimension for appropriate
We have already indicated that—ultimately—the migra-boundary conditions. We also examine there the connection
tion of a ligand inside the protein matrix has to be viewed asetween our observed plateau and Polya’s result of nonreturn
diffusion in a fluctuating environment. We note that work onto the origin for random walks in dimensions greater than
this aspect of the problem has already begun with our stud;wo.25
of diffusion on a fluctuating lattic® We show there(see In Sec. V we present a generalized moment andfysi$
also earlier work®=2) that the effect of fluctuations is mainly which provides an alternative method for studying the pla-
to renormalize the effective diffusion coefficient, and we pro-teau regime and the long-time aspects of decay. This analysis
vide a simple renormalization group procedure for comput+einforces our earlier conclusions, and provides additional
ing it in one dimension. Because the effective diffusion co-insights into the detailed behavior of the decay. It also sup-
efficient depends both on the average probability of aplies us with a simple means of determining under what
channel between neighboring sites being present, and on tig@nditions the onset of the plateau can occur.
correlation time of the opening and closing fluctuations of a  In Sec. VI we will discuss in more detail the applicabil-
channel, an understanding of this problem is essential foity of our model and our results to the description of general
interpreting temperature and pressure dependencies of tigéate space fluctuations of proteins. Of particular interest here
diffusion process. It is not needed, however, for an underare opening fluctuations of ion channel proteins. It will be
standing of the time dependence. Since we are concerné&gen that the principal observable in the ligand migration
here only with the time-dependence of diffusion, this factcase is closely related to the closing time distributions of
allows us to study the more standard diffusion problem bethese proteins.
low, and we will leave a Study of temperature- and pressure- A discussion of our results, including their structural sta-
dependence to a future paper. bility with respect to changes in boundary conditions and
In this paper we continue and extend our theoreticalack of isotropy, and our final conclusions will appear in Sec.
study, providing new evidence for our conclusions and supVIl.
plying details omitted in Ref. 13. The generic mathematical
model we introduced there for the description of ligand mi-; +HE MODEL
gration processes—free diffusion in cadimensional shell
with appropriate boundary conditions—will be analyzed in As indicated in the Introduction, we will describe the
detail. It is surprising that the general behavior of such amigration of a ligand through protein matter in globular pro-
relatively simple diffusion model has not, to our knowledge,teins as a free diffusion process irdadimensional shell. In
been analyzed before, apart from some special ¢35&5. doing so, the protein matrix is assumed implicitly to be ho-
The reaction—diffusion model we will discuss here is of mogeneous and isotropic. Although this simplifying assump-
a much more general character than the initial motivation, tdion might seem at first to be wholly inappropriate for pro-
describe ligand migration in proteins, suggests. It will beteins, many general conclusions that can be drawn from our
demonstrated that it can also be viewed as a simple generfésults are completely unaffected by it; see the final discus-
microscopic model for the fluctuations of a protein betweersion in Sec. VII.
different macroscopic states. Therefore, we will consider it ~ The physical situation of an active site inside a globular
not only in one, two and three dimensions, necessary foprotein is sketched in Fig. 1. Assuming spherical symmetry
investigating the path dimensionality in ligand migration. for the protein, the active site, and its location inside the
Rather, since the relevant state space of such complicatdfotein, we can disregard any angular degrees of freedom.
systems like biopolymers is expected to have a high dimenThe diffusion equation for the radial probability distribution
sionality, we will try to explore the features of our model P(r,t) of the ligand is then
also in much higher dimensions. It will be seen that the fea- 2 d—1 g
tures noticed in two and three dimensions will be much more  — p(r,t)=D|=%+ —— —
S . . at ar r or
pronounced in higher dimensions.
The plan of the paper is as follows: Since the motion of a ligand through the dense protein ma-
In Sec. Il we introduce the reaction—diffusion mddel trix has to be facilitated by protein internal fluctuations, the
which serves as a basis for studying the time-dependence afotion of the ligand is actually coupled to the opening and
ligand diffusion in heme proteins. closing of local channels and/or the creation of local free
In Sec. Il we study the problem analytically. We solve it volumes. As discussed in the Introduction, such processes
exactly for special boundary conditions in one and three diresult mainly in a renormalization of the effective diffusion
mensions and use Laplace transform methods to examine tioeefficientD.*® Therefore, the diffusion coefficie® in Eq.
eventual onset of dimension-dependent decay. (2.1) has to be considered to be renormalized with respect to
In Sec. IV we present detailed numerical studies, basethese local channel/free volume fluctuations within the pro-
on eigenfunction expansions, for general dimensions. Wéein matrix. The value oD will depend on the interplay
demonstrate the ubiquity of thte *2 law for boundary con-  between the time scale of measurement and the rate of physi-

}p(r,t). (2.1
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matrix makes an important contribution to the observed re-
binding curve, and, therefore, we confine our attention to Eqg.
(2.5.

The outer boundary connects the protein matrix with the
surrounding solvent. In this contribution we will be con-
cerned mainly with two different physical situatior(s) the
low temperature regime where the solvent is frozen, i.e., no
ligand can escape into the solvent, did the concentration
of ligands in the protein is kept constant, namely one per
protein, so that no net flux across the protein—solvent inter-
face arises. Both situations are often realized experimentally,
and both are of great interésConveniently, both situations
give rise to the same mathematical description—a zero flux
or reflective boundary condition at some radig, which
corresponds to the outer radius of the protein,

j(Ry,t)=0. (2.63

In the most general experimental situation, however, a
time-varying nonzero flux of ligands across the protein—
solvent interface could be possible. Depending on the actual
cally relevant fluctuations, and, therefore, on temperaturesituation, the exchange of ligands between the protein and
pressure, and other environmental parameters experienced #ie solvent could be described by a variety of equations. For
the protein. example, a reactive condition like E§2.5 on the outer

One boundary condition for Eq2.1) arises from the boundary would describe an effective leakage of ligands into
ligand binding process which takes place at the active sitéhe solvent with some rate, which is possible, e.g., when the
within the protein. Ligands are assumed to be absorbed withgand concentration in the solvent is kept practically at zero.

active site

surrounding solvent

FIG. 1. Sketch of the ligand migration problem.

a specified ratey upon arrival at the site, i.e., The mathematics of a model with a reactive outer boundary
q condition is only slightly different from what we consider
e N(t)=— yp(Rg,t), (2.2 here, albeit much more tedious. We will show that the gen-

eral conclusions drawn from our results are largely insensi-
whereR, is the size of the active site, which, in the case oftive to the form of the outer boundary condition by consid-

myoglobin, is of the order of the size of the heme cavity, i.e.£""9 also two special cases, namely a reactive boundary
several A. In Eq(2.2), N(t) is the number of ligands still in With the samereaction coefficient as in E¢2.5),

the protein matrix, J(R1,t)=yp(Ry,1), (2.6b
Ry _ —note the sign change with respect to E8.5 due the
_ d-1
N(t)_fRod” p(r.1), 23 different directions of the outflux at the inner and outer

o ) . ) boundary—and a fully absorptive boundary,
and this is also the main observable that is monitored experi-

mentally when investigating the rebinding process. Using the ~ P(R1,t)=0. (2.69

radial probability current, In this way we will be able to see the full spectrum of pos-

9 sible dynamical behavior resulting from different boundary
j(rrty=—D o (b, (2.4  conditions, without introducing any additional parameters.
Equation(2.6b is—together with Eq(2.63—of particular
the absorption Eq2.2) follows from the reactive boundary importance for the interpretation of the model in terms of
condition state space fluctuations of proteins; see Sec. VI below, while
. Eg. (2.60 corresponds to a complete loss of the ligand into
J(Ro,1)==7P(Ro.1), (2.5 thqe medium upoﬁ reaching the ;E)rotein—solvent int?erface.
for Eq. (2.1). Finally, we use the initial condition
The reactive boundary conditiof2.5 can be extended _ d—1
readily to more general situations, including nonexponential P(r,0)=8(r=Ro)/r™", @7
rebinding arising from(i) proteins frozen into conforma- which facilitates direct comparison of our model with flash
tional substates, giving rise to a distributigtry) of rate co-  photolysis experiments. The ligand enters the diffusion vol-
efficientsy, or (i) the rebinding process being dynamically ume atR,, i.e., at the inner shell, where it can either rebind
coupled to other degrees of freedom, giving rise to a fluctuimmediately with ratey to the active site, or diffuse into the
ating rate coefficieny(t). These complications, however, are protein matrix and be rebound later.
unlikely to play a significant role at temperatures and time  We can eliminate the dimensional constabtsand y
scales in which diffusion of the ligand through the proteinimmediately by rescaling our space and time variables with

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996
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the reactive time- and length scales=D/y? andl,=D/y.  A. Exact solution in one dimension

;I'he ?ew cil'metnsgnless zj/arlabl/els a_lr_i thend.gotten. fr(I)m the After the limit R;—o has been performed, the actual
rar_lsbtl)rma I'(I)Inb—> dea.n trr]_" N desef tlr:ljensmn esg value of the inner boundarR,, is not relevant anymore in
variables will be used in the remainder of this paper. Duf,,q dimension, and we will set it to zero, for simplicity.
rescaled diffusion equation is then

Also, in order to distinguish this simplified one-dimensional

J 7 d—1 9 from the higher-dimensional treatment, we will replacby
P p(f,t)Z[WﬁL — o7 |[P(n.Y, (2.8 x here.
We can simplify the problem defined by Eq2.8) and
with the inner boundary condition (2.9 further by introducing the auxiliary function
J
— p(r,t) =p(Ro,1), (2.9 g(x,t)=p(x,t) = — p(x,t). 3.9
ar (—Rg Ix
and with the respective outer boundary conditions It obeys the one-dimensional diffusion equation
d 92
o P(D) ] =0, (2.108 21 IO =22 9(x.1) 3.2
=k
along with the boundary condition
prl U] . =p(Ry,1), (2.10n 9(01)=0. 3.3
™

In other wordsg behaves like a probability density with an
P(Ry,1)=0. (2.109 absorber at the origin. From the auxiliary functignthe

The initial condition, Eq(2.7), remains unchanged. original distributionp can be reconstructed via

The rescaling leaves us with three dimensionless param- w ,
eters for our model; the space dimensibnhand the—now p(x,t)=exf dx'e * g(x’',t), (3.9
dimensionless—inner and outer shell raéj, andR;. Note X
that all explicit dependencies on the diffusion and the reacqpich is the solution to Eq(3.1), using the property tha
tion coefficient have dropped out of the systéh)—(2.10.  yanishes at infinityg itself will be determined from Egs.

As already noted in the Introduction and to be discusseds ) and (3.3) using Green’s functions and the method of
more thoroughly below in Sec. VI, the model defined by Eqsjmages.

(2.7)=(2.10 can be viewed equally well as describing the  Consider first a particle whose probability density

internal fluctuations of a system withdrdimensional state G(x,t) obeys just Eq(3.2), i.e., diffusion on the infinite line,

space, withd possibly large. We will therefore analyze the with the initial condition that at time zero the particle is

behavior of this model for general found at some position,, i.e., G(X,0;Xy) = 8(X—X). The
probability density is then easily seen to be

lll. EXACT RESULTS G(x.t:Xg) = e (024 (3.5

1
. . _ _ Jamt

In the following three subsections we will consider gen-
eral isotropic diffusion with an inner reactive boundary only, which is simply the Green’s function of E¢B.2).
i.e., we will consider the limiR;—ce. By studying the prob- Consider now a particle whose probability density
lem first analytically in the absence of an outer boundary andrF(x,t) obeys Eqs(3.2 and (3.3 with the initial condition
then, in Sec. IV, numerically with this boundary, we will be that at time zero the particle is found at sopwsitive posi-
able to clarify the behavior induced by its presence. tion X,. That is, we are interested in diffusion on the positive

We will demonstrate how in this limit the problem can half-infinite line with an absorptive boundary condition at
be solved exactly in one and in three dimensions usinghe origin. The Green’s functio®(x,t;Xy) would solve for
Green’s function techniques and the method of images. Althe initial condition and the diffusion equation, but not for
though these results can be found—in principle—in thethe boundary condition, Eq3.3). In the method of images,
literature?®3%31we find it pedagogically helpful to rederive copies of the Green’s functioB(x,t;x;) with starting points
them here with our particular problem in mind. For generalx; outsideof the domain of interest, which is he(@), are
dimensions exact results can be obtained for the Laplacadded with appropriate weights so that the boundary condi-
transforms of the observablé(t). These results allow a sys- tion can be satisfied. Choosing the starting points outside of
tematic study of the long time behavior. Although analyticalthe domain of interest guarantees that the added functions do
back transformation is not possible in general, it is possiblaot interfere with the initial condition. In our case, it is easily
in one and three dimensions and provides a complementaseen that choosing) = — X, and a relative weight of-1 for
method for deriving the results obtained by the directa single additional Green’s function solves the problem. The
method. resulting probability density has, therefore, the form

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996
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B. Exact solution in three dimensions

Again we introduce the auxiliary functiog, defined in

- [e—(x—xO>2/4t_ e—(X+><o)2/4t]_ (3.6)  EQ.(3.1), which, this time, has to obey the three-dimensional
4t radial diffusion equation

Moreover,F is the Green'’s function of Ed3.2) with bound- d 92 29
ary condition(3.3). 1 9 D=-59(r )+ ——-g(r.t), (3.13

For the initial condition of the original probability den-
sity p we choose now the general forp(x,0)=8(x—x,),  together with the boundary condition
with X, again on the positive axis. Then the initial condition

0 agd p g(Rg,t)=0. (3.19

for the auxiliary functiong is given by
Also, for the initial condition of the original distribution we
choosep(r,0)=8(r —r,)/r?, with r,<R,. Then the initial
condition forg has the form

14
9(%,0) = 8(x—X0) = = H(X—Xo). (3.7
Now we can employ the well-known technique for comput-
ing the general solution from the Green’s function, in this
caseF, and the particular initial condition,

g(r,0)=6(r—ro)/r2—%5(r—r0)/r2. (3.19
The original distributionp can—again—be reconstructed
from g using Eq.(3.4).

We will use the Green'’s function technique for the final
determination ofg again. However, the derivation of a
Green’'s function for Eqs(3.13 and (3.14) is somewhat
more complicated than it was in the one-dimensional case.
Nevertheless, we will be able to utilize some of the results
from the previous section.

Consider now a particle whose probability distribution
H(r,t) obeys Eqgs(3.13 and(3.14 and starts at a radius

1 , , 1 ro>Ry, i.e., it performs a free diffusion in the infinite shell
= [~ (x~x0)%/4t_ g=(x+X0) /4t]+{ —[(x with inner radiusR,. First we introduce a new function

4t Jmt h(r,t) by the relationH(r)=h(r,t)/r. Thenh(r) satisfies

(?h t—azh t
E (r,)—m (r,t)

g(x,t)= fomdon(x,t;xo)g(xo,O), (3.8

where the integral has to be evaluated vgitmterpreted as a
generalized functiof? The full solution forg is then given

by

® J
g(x,t)= J;) dxoa(x—xo)( 1+ ﬁ—)(()) F(x,t;Xg)

—Xop)

(3.1

Xe(xx0)2/4t+(x+xo)e(x+x0)2/4t]] . (3_9)

which is the simple one-dimensional diffusion equation. This
immediately implies that one solution to E(.13 is pro-
portional toG(r,t;r’)/r for some fixed ', with G being the
one-dimensional Green’s function. However, this cannot by
itself be the solution for a freely diffusing particle; it is easily
seen that the integrated probability density diverges-a.

The presence of an absorbing boundary @Bdl4) is helpful
here and allows us to use the method of images again. Add-

The original distributionp is obtained by evaluating Eg.
(3.4). After some algebra the answer can be simplified to

P(X,t;Xg) = [ef(xfxo)2/4t+ e—(x+x0)2/4t]

1
VAt

— eXtXott arf X+Xot+2t (3.10 ing two one-dimensional Green’s functio®(r,t;r’), one
Jat | ' centered atr’=r, with weight +1 and one centered at

) r'=—(ro—2R,) with weight —1 satisfies the boundary con-
where erfc is the complementary error functit. dition (3.14) and the initial condition in the domaifR,,>).

_ Finally, setting the starting point to zero, i.&,=0,  The final form of the three-dimensional radial Green’s func-
brings us back to our model description of ligand migration.iion H is then

The unreacted fraction of ligands is then obtained from the

integration in Eq(2.3) to H(r,t;r0)=%{G(r,t;ro)—G[r,t;—(ro—2Ro)]},
Nyg(t)=e' erfo(\'t). (3.11 ° (3.17

Using the behavior of erfc for large values of the ar_gun?ént, and it turns out that satisfying the boundary condition solves
it is easy to show thal,4(t) exhibits an asymptotic alge- the divergence problem; the divergent parts cancel and the
braict™** decay after an initial transient of order1, integrated probability density of this function is bounded
from above by unity.
. /1 - ;
lim Nyg(t)— \/ —+0(t~3?). Let us pause here for a moment and investigate some
t—oo mt properties of the diffusion process described by the Green’s

(3.12
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function H. The fraction of particles remaining at timen  tion model and evaluating the fraction of unreacted ligands,

the shellr >R, is given after spatial integration by since nothing is involved that is conceptually new. The final
result is
Ro ro_ RO 2
Ny(t)=1—— erfg (3.18 _, Ro | Ro+1 Ro+1
fo Jat Nag(t)=1 RO+ 1—ex R | erf R N
Asymptotically for long times this becomes (3.21
with the asymptotic long-time behavior
. ro—Ro Ro _
lim Ngy(t)— 1+ —+0(t7 %3 |. (3.19 Ro o 1
oo mt lim Ngg(t)—1— 1- +0(t %3]
! Vit e 3l Ro+1 Ro+1 /mt (
We again obtain the Y2 decay at long times—in fact, it 322

takes over rather quickly, after an initial transient. A newagain, we recognize the Polya behaviomNq(e)
feature has appeared, however. In one dimension we saw thaty (R, + 1), this time for a reactive inner shell, not a fully
the decay continues indefinitely, tending toward z@lbpar-  apsorptive one as in E¢8.19. For large inner shells, i.eR,
ticles absorbeyat long times. In three dimensions, however, |arge on the diffusive length scalg, the escape probability

decay tends towards a nonzero constant; only a fraction qropability goes to unity.

the particles is absorbed, no matter how long the diffusion

process continues. This is a manifestation of the famou§- Laplace transform results

Polya theorenf? which states that for symmetric random In general dimensions it is not possible to get exact so-
walks on discrete lattices in one and two dimensions, theutions to the problem of isotropic diffusion with an inner
diffusing particle will return infinitely often to the origin. In  reactive boundary. Analytical progress in studying the gen-
three and higher dimensions, however, the probability thagral problem can be made, however, by using Laplace trans-
the particle will return to its starting point is strictly less than form techniques. In this section we use the methods intro-
one—on a three-dimensional cubic lattice, this probability isquced by Tachiy%f and Sano and Tachi)?é.

approximately 0.35. Roughly speaking, in these higher di-  We again consider a particle isotropically diffusingdn
mensions the space in which the particle wanders is larggimensions and confined to the dom&p<r <. Its radial
enough so that there is a nonzero chance that the particle cgfobability densityp(r,t) satisfies(we use dimensionless

get “lost.” time and space variables as described in the previous sgction
For continuous-time and -space random walks, as dis-

cussed here, the theorem can be modified to a statement of ¢ o2

whether the particle returns to an arbitrarily small neighbor- gt p(r,h=Vv7p(r.), (3233
hood of its starting point. Our calculation shows that, in the 5 oo i )
problem discussed above, the probability of the particle hithere V-=(d"/dr%) +[(d—1)/r](@/dr). The inner reactive

ting the absorbing spheref/r . Note that forr ,=R,, i.e., oundary is described by the condition

the particle starts on the absorbing sphere itdg(f) is zero P

for all time; for R=0, N(t) =1 for all time. The latter simply o p(r,t) =p(Rg,t) (3.23h
follows from the fact that, although in a continuous-space r=R,

random walk there is a nonzero probability for the particle to

come arbitrarily close to the origin, there is zero probabilityand we assume that the particle starts at some radial position

of it actually hitting any prespecified point. ro>Ro,
We will see in later sections that the Polya theorem will _ d-1
r,0)=o6(r—rg)lrg - 3.23
play an important role in understanding the dimension- p(r.0) =0 0)/To ( 9
dependent behavior of ligand diffusion. Define the Laplace transforp(r,s) with respect to time

The auxiliary functiong is, finally, obtained using the in the usual way,
Green'’s functiorH and the initial condition, Eq.3.15. Note

that in three dimensions the corresponding equation differs ~ _ f”dt ~Sto(r t 3.2
somewhat from Eq(3.8), due to the existence of the three- P(rS) o ¢ pr.b). (329
dimensional volume elememﬁ, o
The diffusion Eq.(3.233 then becomes
g(r,t)=f droraH(r,t;r0)g(ro,0). (3.20 V2p—sp=—a8(r—ro)lrg ", (3.29
Ro

Sano and Tachiy& make the following useful observation:
We skip now the tedious algebra involved in evaluating thisEq. (3.25 is a Green'’s function equation, and its reciprocity
relation, reconstructing the original distributign via Eq.  property can be utilized to arrive at the adjoint equation of
(3.4), going to the limitry— R, to obtain our ligand migra- (3.25,
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1924 W. Nadler and D. L. Stein: Biological transport processes

V2P(r,s;rg)—Sp(r,s;ro)=—3(r—rg)/rd 1 (3.26  the long-time limit and illustrate how the Polya theorem
o 39251 0 210 0 0 ’ . . . ..
works in this model. For>0, and in the limiz—0, K (z) ~
whereV? is the Laplacian operating on the variablg and i (»)(42) * [note thatk (z) =K _,(2)13 Then in one di-

the dependence g on r is now explicitly noted. Now mension, the right-hand side of E§.33 tends to 1s in the

define limit s—O0, which corresponds to a long-time decay
B N(t)~t 2,
N(ro,t):J drrd=Ip(r,t;ro). (3.27) Two dimensions is a special case; here we need the lim-
iting form Kq(z)~—logz for small z. Using this in Eq.

(3.33 yields N(Ry,s)—(—1/slogs) as s—0; the decay is

Integrating Eg.(3.26) over [% drrd=1 we get
grating Eq.3.26 I, g marginal. For long times\(t) decays as 1/log

\% N(ro,s)—sf\j(ro,s)z —1. (3.28 In three and higher dimensions Polya’s theorem ensures
o thatN will grow as 16 ass—0; that is,N(t) tends towards
It is also easy to show that E(3.230 becomes a constant ast—w. We find that ass—0, N(R,s)
9 3 —(1/s)(d—2/d—2+Ry), so that ag—,
— N(rg,s) =N(Ryg,s) (3.29
o fo=Fo N(Ro.)— 2 d=3 (3.34
0,t)— , =3, .
and that Ro+d—2
lim N(ro,s)zlls. (3.30 We can find the inverse transform of E(8.32 and
ro— solve exactly for the general case,&R) in one and three

We can simplify slighty by writing N(ro,s) dimensions. In one dimension we find
=r3"92y(r,,s) and plugging into Eq(3.28. The resulting
homogeneous equation f@Kr,,s) has as its solutions the
modified  Bessel  functiod® 1. _q)(ysfo)  and

Kan—1(ysrp). Any two of these form a linearly independent

Nld(r01t): 1-

2\t

ro—R
erfc( 0 0)—e(’oRo)et

pair; relations among the three are given in Abramowitz and ro—Ro
Stegurt® (They are slightly different if the functions are of xerfc Vt+ 2t (3.39
integer order or of half-integer ordgtowever,l . ,(z) di-
verges ag— regardless of whetheris an integer or half- Whenr,=R, this reduces to E¢3.11).
integer, andK ,(z) —0 asz—». Our solution to Eqs(3.28 In three dimensions
and(3.29 is then
N| — 1—-d/2 r
R(ro,9)=Crd 92K yp_1(VSt) + s, (3.31 Nay(ro.t)= 1 : [erfc( o )
whereC is a constant to be determined. This is easily done 4= 2\t
by using the boundary conditio8.29, so the full (exac} Ro
solution to Eqs(3.28—(3.30 is — e(1+1Rg)(rg—Rp) g(1+1/Rp)%t
" 1 ro 1-d/2
N(rg,.s)==< | 1-| 5
(o:9)=3 (Ro) X erf 1+— N (3.36
2f
As t—o», this becomes
1 Kd/z—l(\/gro)
X ) 1+1/Rg)(ro—Rg)
Ka2(VSRo) | Kaiz—1(VsRo) Ro 1 1 et ol Ro)
1+ s ————— N3g(rg,t)=1—— 1 - —1t
Karz-1(\/sRo) o, = v 1+ —
(3.32 Ro Ro
Ford=1, 2, and 3, this agrees exactly with the results of (3.37
Sano and TachiyéTable |).34 so the Polya limit isN(rq,%)=1—(Ry/rq)[1/1+ (1/Ry)].
We are most interested in the case whegesR; this  Forry=R, we recover Eq(3.22.
simplifies Eq.(3.32 considerably to An important consequence of E®@.32) is that the decay
of N(rq,t) leading to the Polya regime will be dimension-
N(R s)= E _ 1 dependent in general. By keeping higher-order terms in the
(R,s)= S 1 . (3.33 _ e .
K g2( VS Ro) smalls expansion of the modified Bessel functions, Eqg.
1+ \/g (3.32 can be used to study this behavior in detail. This can

Kd’zfl(\/gRO) get rather messy, however, so we report on only one impor-
By using the fact that the limit—oc corresponds tes—0 for  tant aspect of the general dynamics. Fge=-R,, N(rg,t)
the Laplace transform, we can use these equations to analyremains close to one until about the time it takes for the
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particle to diffuse to the reactive boundary, which is of ordersented using polynomials inrlAnd trigonometric functions.

(ro—Rp)? Long after that time, the fraction of particles re- In one dimension they are simply given by the sine and

maining decays a$ (“~22 (for d=3) towards the Polya cosine functions.

limit. The eigenvaluek,, , together with the amplitudes, and
The decay behavior is very different fop~R,, how- b,, can now be determined from the boundary conditions

ever. There the decay sets in quickly, of course, and after af2.9) and(2.10. In order to apply these boundary conditions,

initial transient decays as “/2. This is because the geometry we use the standard formdfa

looks quasi-one-dimensional for the particle close to the re-

active boundary. ' While there may be some dim.ension-. —[y"Z,(Y)]1=Y"Z,_1(y), (4.4)

dependent behavior near the onset of the Polya regime, this 9Y

in general will not be noticeable far, close to or equal to  \yherez represents either Bessel functidror Y.33 Then the

Ry—the Polya regime sets in before the dimension-inner reactive boundary condition E¢¢.9) becomes
dependent regime becomes appreciable. In these cases, the
behavior looks remarkably dimension-independent; asid&nl@nJd-a2(KnRo) +bnY _q/2(knRo)]
from the initial transient, one seesta'? decay towards a
' . o =apJ1_g2(kaRo) +0b,Y1_g2(knRo)- 4.

nonzero constant. Because measurements of ligand diffusion n1-a2(KnRo) +Bn Y1 - arz(knRo) 4.9
correspond to the initial condition,= Ry, this has important  Similarly, the outer reflecting boundary condition, Eg.
consequences for measurements of ligand recombination, #3.103, becomes
discussed in Ref. 13. This point will be dealt with further in
Secs. IV and V. P and a2l KnR1) +bpY _ o KnRy) =0, (4.6

It is useful at this stage to transform to new parameters,

the width of the shell

IV. NUMERICAL TREATMENT AND RESULTS AR=R;—Ry, (4.79
We will present in the fo”owing a detailed numerical and the ratio of this shell width to the inner radius
treatment of the problem defined by E¢®.7)—(2.10. First, AR
we will describe the numerical procedure involved, and dis- X= R (4.7b
0

cuss its effective implementation. In Sec. IVB we will
present extensive numerical results that show the existenend to introduce the scaled eigenvalue

of an intermediate algebraic decay K{t), with t~*2 to- B

gether with the existence of a plateau-regimeinl. In Sec. Kn=KnAR. (4.9
IV C, we will present a mathematical argument for the exist-  Eliminating the amplitudea,, andb,, using the two Egs.
ence of the algebraic regime, and, finally, in Sec. IV A we(4.5) and (4.6), and employing the parameters introduced
will analyze the relationship between the plateau regime andbove, we derive the eigenvalue equationKgrin arbitrary
the properties of the lowest eigenvalues. dimension,

A. Numerical solution

1
0=J1_ap| Kn | Yoan Kn 7—<<
Equation(2.8) with initial condition (2.7) can be solved ! dlz( " X) dlz{ " (1+X)
via a spectral expansion

X 1
_J—dIZ{Kn Ty | Yi-ar2| Kn —)
1+X X
PrD=3 exp(— k2 (1) Uin(Ro). 4.0 (10
: K, 1 X
where they, (r) are the eigenfunctions of the right-hand side T AR |7 Kn x| Y-az Kn (1+X)
differential operator in Eq(2.8), with eigenvalues-k2. Us-
ing standard Sturm-Liouville theo¥it can be shown that _ X l
, : . : J_arg Ky Y_ar| Kn : (4.9
these eigenfunctions obey the orthogonality relation (1+X) X

R, In one dimension, for example, this equation simplifies to
f drrd_ll//n(r)wm(r):&w,mNz: (4.2 K
o cogK,)— —= sin(K,)=0. (4.10
with N being a normalization constant. For genedathe AR
eigenfunctions can be expressed in terms of Bessel functions, The motivation for the parameter transformati@h?)—
_1-dr2 (4.9 is easily seen now. In one dimension the eigenvalue
YD =" a1 akal ) +0nY1-gkal)], - (4.3 equation assumes a very simple form. Furthermore, we will
whereJ and Y are the(linearly independentBessel func- be concerned below very often with the regime of lafde.
tions of the first and second kind, respectivElyn odd di-  In this regime, the low-lying eigenvalues, i.&,<AR,
mensions, i.e., for half-integer indices, these Bessel functionwhich determine the long-time behavior, can be determined
are related to their spherical counterparts, and can be repre4th sufficient accuracy by neglecting the second term in the
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For the higher-lying eigenvalues there arises the problem

) ] P . o ' ” of specifying intervals in which to look for the eigenvalues,
K without overlooking one. This is particularly a major prob-

sof lem for the determination of the second eigenvakig, As

can be seen already in Fig. 2, and will be discussed in more

1ol detail below in Sec. IV D, there emerges a considerable gap

which increases with dimension.

For still higher eigenvalues, however, one can use the
following arguments. Let us consider the regime
K,>max[X, (1+ X/X)]. Using the properties of Bessel func-
2000 tions for large values of the arguméfit,

2 _m T
2508 J+(2)= o8 zr5 v +0(1/z), (4119

FIG. 2. Function defined by the left-hand side of E4.9 for d=10, and
AR=10C%, andX=10; the zeros of this function are the eigenvalikgen-

tering the eigenfunction expansig#.1). v [2 T ™
+,Z)= — SN\ Z+—+< v— —
+(2) Tz T2 4

1501

+0O(1/2).  (4.11B

. . _Equation(4.9) can be simplified to the one-dimensional Egs.
equatlons..On the other h_and, the eigenvalues thgt determing.10 and (4.10). This tells us immediately that for large
the short-time behavior, i.eK,>AR, can be obtained by values ofAR, at intermediate times the eigenvalues are given

neglecting the first term in the inverse equations, i.e., approximately by
AR 1 X 1
OZK—n Jl—d/2 Kni Y—d/2 Knm Kn~ n—I—E o for Kn<AR, (412
X 1 wheren is an integer, while at largdf,, (shorter timesthe
—J g K a+x Yi-ar| Koy eigenvalues shift to

Ky~nw for K,>AR. (4.13

1 X
_(J‘d/Z( Kn X Y‘d’Q[K” (1+X) In both regimes, the eigenvalues have a spacing of
(Kps1—K,) =, with a transition regime, where, because of
Yd/2< K, 1” (4.9) smoothness, the spacing is somewhat shorter or larger, but
X never smaller thanr/2 or larger than 3/2.
We have, therefore, defined the interval in which to look
for the eigenvalueK, ,, iteratively by K,+w/2, K,
AR +3m/2). In this way it is impossible to overlook a single
e codK,)—sin(K,)=0. (4.10) eigenvalue. We have found that for the determinatiofK gf
n this method is already sufficient. Due to the gap between
In both limits, K,>AR and K,<AR, the eigenvalue andK,, only for the determination of the second eigenvalue
equations for th&,, become independent &fR, and conse- the intervals K+ 7/2,K, +37/2), (Ky+37/2,K;+57/2),
quently, this holds also for the correspondifig. This prop-  €tc. have to be scanned successively, ufjils found.
erty gives us already some insight into the scaling behavior ~The amplitudesa,, and b, are finally gotten from Eq.
of the time constants k%; see Eq(4.1). For large values of (4.6),
AR those time constants will scale withR?, which is par-

X
—J_ap| K a+x

and

ticularly important for the longest time scales. an=— % Y ao(KnR1), (4.14a
The zeros of the left-hand side function in £4.9) are

the eigenvalues of the spectral expansion. Figure 2 shows the 1

typical behavior of that function which exhibits the qualita- ~ Pn=1 Ju2(knR4), (4.14b

tive characteristics known from Bessel functions. There is

the practical problem of finding these zeros in an effectivevhere we have used, for simpler notation, the shell regii
way. For the case of the lowest eigenvalue one can utilize thandR;, together withk,, again. The normalization terid in
results of the generalized moment treatment of Sec. V belowgds.(4.14 is gotten from the normalization condition for the
namely that the inverse of the time constant which is  eigenfunctions, Eq.(4.3. Using the abbreviationgm,n
given in analytical form, provides an exact upper limit for =0,1),

the lowest eigenvaluk?. This upper limit can be used in any Jo=] KR 4.15
numerical schent® as the interval (GQ/1/7] in which to mn=Jarz-m(KaRm). (4.153
perform the numerical search for that eigenvalue. Ymn=Ydaz-m(KnRm), (4.15bh
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z L > .
& &
- -3 -
=4 T T T T -~ -4 T T T
-2 0 2 4 6 8 -2 0 2 4 8
log (t/7,) log (t/7,)

FIG. 3. N(t) vst for d=1; AR as indicated; the dashed line is the behavior FIG. 4. N(t) vs t for d=3, AR=1000, andX=10; the dashed line is the
predicted by Eq(3.11). behavior predicted by Eq3.11); the dotted line is the single-exponential
long-time fit, Eq.(5.10.

this normalization term can be cast into the form

) 1, ) Eqg. (3.11). However, here a new feature emerges. At some
N= 2 Ri(Yord11=JorY1) + 2 Rol (Y0110~ JoaY10) time 7, the algebraic decay levels off to a behavior that
looks like a plateau in the double-logarithmic plots we use to

~(Yo1doo—Jo1Yo00) (Y0110~ Jo1Y10)]- (4.16  present our data, i.e., the data appear to stabilize at a value

The numerical method we have chosen here is different(t)~Npiaear This plateau is essentially the single-
from other viable numerical approaches like SpaCe_exponenual long-time decay. Since there emergesalarge gap
discretization, followed by either generalized momentbetween the lowest and the second-lowest eigenvalue—see
expansioff or an eigenvalue analysis® or from short-time ~ the discussion in Sec. IV D below—this gap represents itself
approaches like Chebyshev propagafloive see some ad- @S @ plateau in that representation of the Qata. .
vantage in working with the eigenfunction expansion of the ~ Figures %a) and §b) show how the relationship between
original reaction—diffusion operator in its infinite- @lgebraic decay and plateau regime depends on the param-
dimensional Hilbert space of functions. For example, it is notetersAR and X. As Fig. 5a) clearly demonstrates, large
necessary to check whether a discretization employed is fingalues of the parameteX are responsible for the plateau
enough to catch all phenomena correctly. Instead, the abov&9ime. Increasing values #flead to an increasing length of
algorithm gives successivell numerically exact eigenval- the plateau regime, concomitant with an increasing value of
ues of the operator, starting from the lowest one, i.e., fronfN(t) at the plateau. ConverselyR controls mainly the po-
the longest time scale. Therefore, the dynamics is obtainedition in time of the plateau regime. Figuréopdemonstrates
correctly down to the time scale corresponding to the highesfat the form of the plateau regime is more or less invariant

eigenvalue included. For the cases of interest, this numbgtgainst variations of the value afR, as long as the plateau
can be quite large, i.e., several thousand. regime is still recognizable. An increase AR mainly re-

sults in a shift of the plateau regime to longer times.

Figure 6 finally shows the dependence of the plateau
regime on the space dimension. Starting with2 a devia-

Figure 3 shows results for the one-dimensional case withion from the one-dimensional algebraic? decay occurs,
finite boundary. After an initial transient, which ends at aboutwhich appears as a stabilization of the valueNgt) during
t~1, one can see clearly the algebraic decay witf?, some time interval, the plateau. This effect becomes more
which is predicted by Eqg3.11) and(3.12 for the case of pronounced as the space dimension increases. The time for
an infinite boundary. Both regimes are described correctly byhe onset of the plateau decreases, while the cutoff time in-
Eq. (3.11). With a finite boundary, the algebraic decay endscreases wittd, resulting in an increasing length of the pla-
at some finite time and changes into a single-exponentiaieau at increasing values & cq, The latter result is in
cutoff. The time scale of this cutoff grows quadratically with accord with the different forms of the Polya escape results,
AR, and can be described by the generalized moment apvhich predict an increase of the escape probability itk

B. Results

proximation; see Sec. V below. will be shown in Sec. V below that, indeed, the plateau value
In Fig. 4 results are shown for a typical situation in threeconverges to the Polya value faRR—oc.
dimensions for fixed large values BfandAR. It still shows The case ofl=2 requires some more discussion. As can

the initial transient, followed by an intermediate algebraicbe seen in Fig. 7 and in Fig. 8, there is a clear deviation from
decay. Both can be described by the one-dimensional resullhe one-dimensional behavior. However, whether this new
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log N(t

8
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FIG. 5. N(t) vst for d=3, (&) AR=1000 andX as indicated(b) X=10 and
AR as indicated; the dashed line is the behavior predicted by FEty).

behavior may be called a plateau—as it clearly cath™#?—
or not may be seen as a question of converfifostrictly
speaking, there is no plateau in the liiR—o since the

0 ——1 —— ————t——t—
log N(t)
1T X =10 T
3 30
100 ]
2+ / +
X ]
34 N T
N
AN
-4 +———— e
2 0 2 4 8 10
logt

FIG. 7. N(t) vst for d=2, AR=1000, andX as indicated.

value, see Sec. IV D below. We interpret the developing
structure inN(t) in d=2 as a plateau, although it can be
considerednarginal since it vanishes in the limiA R—oo,

C. Dimension-independence of decay at short and
intermediate times

Our numerical results, reported in Ref. 13 and the previ-
ous sections of this paper, have indicated that the behavior of
both the transient short-time and the intermediate-time alge-
braic decay regimes are both independent of dimension. In
Sec. lll C it was further claimed that placing the initial po-
sition of the diffusing particle on the inner reacting boundary
was sufficient to produce the dimension-independent?
decay at intermediate times. In this section we demonstrate
this assertion analytically by direct examination of the eigen-
value equations in the short- and intermediate-time domains.
We consider the cases of both a reflecting and an absorbing
outer boundary. For both cases we derive th¥? decay at
intermediate times; this corresponds to our assertion that it is
the proximity of the particle’s initial position to the inner
boundary that drives this decay, and the outer boundary plays

plateau valueN a4, Vanishes in that limit; see also Sec. V no role in this portion of the falloff.

below. However, for finite values &R, the amplitude of the

The arguments in this section are purely mathematical;

exponential cutoff is nonzero, concomitant with an increasalternative derivations and accompanying physical explana-
ing gap between the lowest and the second lowest eigenions for the observed dimension-independence are given in

log N(t)

8 10
logt

FIG. 6. N(t) vst for AR=1000 andX=10, andd as indicated; the dashed
line is the behavior predicted by E.11.

Secs. Il C and V.

15

10 +

FIG. 8. K, vsd for X=10, 16, 1¢°, 10",
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We study first the general-dimensional reaction- We already have the restriction thigtAR>1. Because
diffusion model with reflecting outer boundaligs.(2.8)—  we are also restricted to the biologically relevant case where
(2.103]. The solution of the diffusion equation thdimen- AR>1, k,, itself can be small or large compared to one.
sions, written as an eigenfunction expansion, and subject t8mallerk,’s correspond to longer times, and in particutgr

initial condition Eq.(2.7), is given by Eqs(4.1) and(4.3), small compared to onébut large compared to AR) corre-
sponds to the intermediate time regime, where we expect to
p(r,t)y=> exp(—k2)r1= Y a,J;_ga(Kar) see the algebraic decay. We can then use(Ed2 for k,
n small compared to unity, and for largler (shorter timeswe
use Eq.(4.13.

1-d/2
F0nY1-a2(Kal)IRg 1 8nJ1-ai2(knRo) Equation(4.19 can then be rewritten, using E@.10),

+ bnYldeZ( knRO)]r (4-18) as
where as usual we use dimensionless space and time vari- d ” R
ables. We also replaeg in Eq. (2.7) with R, because we use T N(t):(Z/AR)nzO e 'ky sif(k,AR).  (4.20
here the initial condition that the particle starts at the inner
reactive boundary. At intermediate times, when Eqg.(4.12 holds,

We now consider an outer reflecting boundanRatin  sif(k,AR)~1. Substituting Eq(4.12) into Eq. (4.20, we
addition to the inner reactive boundary Bp. The inner find that the sum on the right-hand side now depends es
boundary condition is described by Eg.9) and the outer by 3 n2ent (with the n’s now half-integers Because the terms
Eqg. (2.109. The resulting eigenvalue equation is given byin the summand are closely spaced, we can convert the sum
Eqg. (4.9. to an integral, and immediately scale out théependence to

We now introduce our main approximation, namely thatfind
knRo>1. Physically, this amounts to looking at times short
compared to those needed for ligands to diffuse very farinto  _ — N(t)~t=3/2 (4.21)
the region between the two boundaries, which corresponds to t
the short and intermediate times that we are interested ifyhich gives thet ~/ decay.

Specifically, the algebraic decay regime comes about from The previous discussion used a reflecting boundary at
interaction with the inner boundary, as already stated,; thqa;l_ Even thoughR,; must therefore enter the eigenvalue
outer boundary is responsible for the position of the p|ateaUequations, we expect physically that the precise nature of the
related to the previously discussed Polya limit, and the subgyter boundary condition cannot affect the physics at short
sequent exponential decay f(t). BecauseR;>Ry, our  gnd intermediate times. That this is the case can be seen by
condition automatically implies that,R,>1. Furthermore, yepeating the previous discussion with only one change; we
because we have already seen that the situation of biologicgaémace the reflecting boundary Rt with an absorbing one.
and physical interest is wheraR=(R;—Ry)/l, is large  These two outer boundary conditions represent diametrically

compared to one, we confine ourselves to the further condigpposite situations. The new outer boundary condition is
tion that k,AR>1. These are our only approximations, then

which result in the simplified eigenvalue E@.10).

The error in Eq(4.10) is of order 1k,R,. As discussed P(Ry,1)=0. (4.22
in Sec. IV A, numerical analysis indicates that in all cases  Tne eigenvalue equation EG#.9) is replaced by
Eqg.(4.10) becomes an accurate expression for the eigenval-

ues after the first three or four. Kn
Using this and results fa,, andb, from Sec. IV A, we
find _J1-a2(knR) Y1 - 4/2(KnRo) = J1 - 4/2(KnRo) Y1 - a/2(KnR1)
* , J1-d(KaR1) Y —g2(KnRo) = I /2(KnRo) Y1 - aa(KnR1)
RS p(Ro,t)=(2/AR) X, e i cod(k,AR).  (4.19 4.23
n=0

In Eg. (4.19 we let the sum run froorm=0, even though the Using the same approximations as before gives

approximations involved break down for the first few eigen-  tan(k,AR)= —k,,. (4.29
values. However, as long as we restrict ourselves to time.Tl
short compared ta,ry/l,, the error involved will be expo-
nentially small.

he arguments used for the reflecting outer boundary can
now be repeated; we now find that

The left-hand side of Eq.(4.19 is equal to * )
—(d/dt)N(t), as discussed in Sec. Il. Because E10) Ry 'p(Ro.1)=(2/AR) X, e ' sirf(k,AR). (4.2
and therefore Eq4.19 are independent of dimension, we n=0
have already shown that for times short compared tg/l, , Using the new eigenvalue equation E4.24), we find
the time decay oN(t) is independent of dimension. We can w
g:)efz:;r;ir, however, and derive the'? decay at intermedi- RI~1p(Ry,t)=(2/AR) > kﬁefkﬁt co@(k,AR). (4.2
. n=0
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Note that the new eigenvalues, relative to those for the re-

flecting outer boundary, are simply shifted by2; also that 10°
the differencek,,, ; — k, between adjacent eigenvalues is un- ¥,/ X,
changed. Equation(4.26 then becomes identicdlup to
O(1k,AR)] to Eq. (4.19. This is not the end of the story,
however, because-(d/dt)N(t) is no longer equal to the

left-hand side of Eq(4.26). This is because the outer absorb- 1000 L
ing boundary condition implies no incoming flux of particles ]
at the outer boundary. Because we are restricting ourselves to 100 =+
times much shorter than those required for particles to dif- :

fuse to the outer boundary, however, this term makes a neg- 10
ligible contribution toN(t) [in fact, its contribution is of
0O(1k,R;)] and our earlier conclusions remain unchanged.
We have shown, for short and intermediate times, thafF!G. 9. Ky/K; vs X for d>2, as indicated; note that the lines have a slope
when the initial position of the diffusing particle is on the °f (4=2/2.
inner reactive boundary, the short- and intermediate-time be-
havior of N(t) is independent of dimension, and we have
derived the universal 2 algebraic decay at intermediate (K —)Y {K -
. . . 1-d/2 n —d/i2 ™\n
times. Our analysis also supports conclusions generated by X (1+X)
our numerical studies, in particular that the conditibR>1 X
is necessary for the algebraic decay to be observed éf all —Jd/z[Kn —_—
the outer boundary is too close to the inner boundary, expo- (1+X)
nential decay sets in almost immediafely The ratioK,/K, is a direct measure of the length of the
A second conclusion can be drawn. In order to derive theplateau in a double-logarithmic representation. Figure 8
t Y2 algebraic decay, we needed that a subset of the relevademonstrates that, becomes practically independent Xf
ky's be small compared to unity. Our starting condition wasfor large values ofX, and increases almost linearly with
that k,Ry,>1. If Ry itself is not too small, this is perfectly K,, on the other hand, depends strongly on bXtlandd,
consistent withk,<1. However, for values R, (in units of  decreasing with both. Because of the weak dependenig of
l,) which are too small, the two conditions are incompatible,on X, we refrain from presenting the data 15 directly, but,
and not Y2 decay arises from our calculations. But this con-rather, show how the rati ,/K, depends orX andd in
clusion is consistent with our other conditi¢ggee Sec. ¥  Figs. 9 and 10. Figure 9 demonstrates that the nétif<
that the value oK not be too largé? Our analytical results, grows with X according to a power law,
therefore, not only support our numerical conclusions but K, /K o X (@202 4.29

also shed some light on their physical origins.
Interestingly,(d—2)/2 is the same exponent with whid¥(t)
decays to its Polya limit in the semi-infinite system, see Sec.

Yl*d/Z

1)_
Kn 5| =0. (4.27)

D. Eigenvalues and the plateau [l C. In 2d the ratio depends only logarithmically o
Finally, we want to investigate what a closer look at the
: ' . . Ky /KixyIn X, 4.2
eigenfunction expansion can tell us about the plateau regime _2 ! (4.29
that we observed in our numerical results. as Fig. 10 shows.

The existence of a plateau regime in a double logarith-  Since the ratidK,/K; grows without bounds witiX for
mic plot, like the one in Figs. 3—7, is an indication that thereall dimensionsd>1, it is clear that a plateau will emerge for
is a considerable gap in the values of the time constants of
the eigenfunction expansion. In other words, if the eigenval-
ues are ordereds;<k,<Kj..., then there is am, so that
k,<<k,,, holds. Since the final decay df(t) is single- K,/K,
exponential, which is particularly well illustrated by the
single-exponential long-time approximation in Fig. 4, see
also Sec. V below, this gap should appear betweeandk,.

In order to investigate this in more detail, we will ana-
lyze the behavior of the system size-scaled eigenvafyes
Eq. (4.8), for n=1,2 onX in the limit AR—oo, It is reason-
able to employ this limit, since, as the results presented
above show, a plateau regime appears only for large system
size, and, as Fig.(b) demonstrates, the length of the plateau

R U IS S E U IS SR N
T T T T

. ) . A ) i 0 10 20 30 40 log X 50
in a logarithmic plot is practically independent AfR. An 10
additional advantage is that the eigenvalue equatf)

simplifies to FIG. 10. K,/K, vs X for d=2; the dashed fit is 4.3l0g(0.41+ X).

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996



W. Nadler and D. L. Stein: Biological transport processes 1931

pon=[=Vi ] "=(8(r—ro)[ V7] "D), (5.2

0>rllv||v|r

wherel denotes the constant function of value(fldenotes
the integral over from R, to R; and has the properties of an
inner product on the space of functions, and the delta func-
tion comes from the initial condition, Eq2.2). V2 can be
cast into the somewhat more convenient form

1 d d

log M(t)

-0.5 T

2_ ~od-1
Visrmig U G (5.3
! - o T et 2 supplied with the adjoint boundary conditioffs,
0g
d

FIG. 11. Test functiorM (t), Eq. (4.30), vst, 7 as indicated. W F(r) r—R :f(RO)' (549

-0
d ; 3 b
sufficiently large values oK. It remains to be determined dr (r) . =0, (5.4b

™

what such a sufficiently large value of is, depending on
dimension. For that purpose let us consider a simple teghat any functiorf(r) on whichV? operates has to obey.
function, a sum of two exponentials, It is useful to define the auxiliary functions

pon(r)=[=VZ] "1 (5.5

from which we can obtain the desired moments by evaluat-
where 7 is a measure of the ratio of the two time constantsing them atr=R,. For n=1,2,..., these functions can be
Figure 11 shows the behavior df(t) in a double logarith- ~determined iteratively via the set of equations

mic plot for various values of. In 1d the ratio of eigenval- 2 _

ues in the limitAR— is K /K ,=3. Since K,/K,)2=7/7, Viton()==#n-1() 5.6
this value corresponds approximately to the curve#ed0  using

in Fig. 11, clearly no plateau. However, it can be seen that a

plateau already begins to emerge in the ramge80-100. Ho(r)=1 5.7
Therefore, a value ofK,/K;)?>~6-10 can be considered a as the starting function. The general solution of E&6)
lower threshold for the ratio of the lowest eigenvalues inunder the boundary conditior(s.4) is

order to produce a recognizable plateau regime. From Fig. 9 Ry

it can b_e seen that~10 is sufficient in 31,_ and for larger an(r):Rglfmf r‘ffl,u,(nfl)(rl)drl

dimensions the threshold values frare still lower. In 21, Ro

however, due to the logarithmic dependenc&gfK ; on X, Ry 0

the lowest values oK necessary to produce a recognizable +J r}‘df fg_lﬂ—(n—n(fz)dfzdfl-

plateau are in the rangé~100-1000. r Ro

M(t)=£(e’t+e’“f) (4.30
5 , .

(5.9
V. GENERALIZED MOMENT ANALYSIS The evaluation of the integrals in E@S) is tedious but
straightforward. We give here the results for; and u_,,
The method of generalized moment expan&igfh?841:38 g
=AR(Y9—1)/Xd (5.93

allows an analytical analysis of the approximate long-time*-1
behayigr of N(t) fqr finite A.R. In particqlar, it providgs & 4 ,={ARX(Y'—1)%(d?—4)+ AR} 2—d+ Y (d?—4)
possibility to obtain approximate analytical expressions for
the time constant of the exponential cutoff—corresponding — Y292+ Y24(d+2) J}{X3d*(d*~ 4)}, (5.9
to the lowest eigenvalue—and for the valueNft) in the
plateau regime. In the following we give a short review of
the basic ideas.

The long time(or low frequency moments ofN(t) are
defined by

where the abbreviatiof = (1+ X) was used.

Based on the generalized moments of a relaxational dy-
namical observabl®l(t), one can define single-, multi-, and
nonexponential approximations that reproduce a specified
number of those moment&*? Of particular interest in our

o case is a single-exponential approximation that reproduces
m—n=(n—1)! J; " IN(DdL (5.0 the momentsu_, and u_, of the exact functiorN(t). It is
easy to see that such an approximation has the form
They can be written formally as matrix elements of the in-
verse of the adjoint stochastic operal%f0 introduced in Niong(t) =0y exp(—t/7), (5.10

Sec. Il C?® with the time constant; given by

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996



1932
T|=/.L,2/ILL,1, (51])
and the amplitude, given by
qQ=ulilp s (5.12

The time constant; is an approximation to the time

constant of the exponential cutoff, i.e., the inverse of the
lowest eigenvalue. It can be shown that the ratio of succes- 7*

sive moments u_/u_(n+q) converges to the lowest
eigenvalué® The inverse of the first possible ratio is the
well-known mean first passage tifte*®

TMEPT= M -1/ o= -1, (5.13

and is used quite often as an approximation to the inverse
the lowest eigenvalu®. But whenN(t) exhibits nonexpo-

W. Nadler and D. L. Stein: Biological transport processes

A crossover time* from the algebrait ~**decay to the
plateau regime can be estimated through the relation

Nyg(7)=qp, (5.19
giving rise to
~ —12 (5.17
7q

The other condition for the existence of the algebraic regime
is that this crossover time* is also much larger than the
initial transient time.

Since 7 is proportional to the square of the inverse of

Qi, , We can use our knowledge of the asymptotic behavior of

q;, see Eq(5.14), for an analysis of the behavior af. For

nential behavior—as in our case—the mean first passag§~., we find from the Polya limit that* assumes the lim-

time is not a good estimate of the exponential cutoff. HOW‘iting value, 7 —[(Ry+d—2)%/m(d—2)3

ever, it turns out that the second ratio, which determifes

for R;—oe.
Therefore, in order that*>1 also large values oR, are

already provides an acceptable approximation in most Caseﬁecessary in this limit. A large Polya valté) simply re-

see Fig. 4.
The quantityq, is an approximation to the contribution
of the exponential cutoff to the overall decayMft) and, as

duces the length of the algebraic regime. lh § vanishes
for R;—oo, although logarithmically, thereby guaranteeing
that 7 —o, too, fulfilling the necessary condition for an al-

such, it provides an estimate of the plateau value at Whic@ebraic regime to be present in this limit faif values ofR,.

N(t) stabilizes, before it finally decays exponentiatiy.also

provides a bridge to the semi-infinite system results deriveq o that only 7

in Sec. lll. In the limit R;—c the approximation(5.10
should still exhibit some aspects of the behaviorNgt).
Indeed, in that limitr;—, andq, becomes the escape prob-
ability of Polya’s theorem
0 ds2
d-2
Ro+d—2
compare Eq(3.34. Ford=1, the amplitudey, vanishes as
q,<AR™1, whereas fod=2 it vanishes only logarithmically,
1
[0 ——
T Ro IRy

This is another indication of the marginal behavior ic. 2t

(5.19

lim q,=
R1~>OO

d=3’

(5.19

In 1d the quantity7* does not make any sense since we
controls the algebraic regime here. We
note, however, that also het&>1 for AR>1 holds.

Since we know from Sec. IV thatR andX regulate the
algebraic and the plateau regime antagonistically, it is inter-
esting to also analyze the dependence*obn these quanti-
ties. Surprisingly, we find no qualitative difference between
d>2 andd=2 here. For fixed values ok and AR large
™xAR? i.e., 7 exhibits the same behaviar. Therefore,
large values ofAR increase the length of the algebraic re-
gime, as Fig. tb) demonstrated. However, for fixed values
of AR and X large we find7*—= 1. In other words,7
decreases with increasing thereby shortening the range of
the algebraic regime, letting it vanish altogether Xorco.

These different results fdrR;—o on the one hand, and
for AR—o with X fixed andX—» with AR fixed, on the

is quite surprising that a simple single-exponential approxi-Other hand, may appear surprising. However, one has to note
mation like Eq.(5.10 is already able to reproduce such athe limits are not interchangeabl®;— corresponds to a

complicated limiting behavior.

combined limit AR—o together with X-c. Note that the

These results on the exponential long-time cutoff nowpParameteX, which describes the ratio of the thickness of the

allow us to ana|yze the a|gebraic and the p|ateau regime fronai—dimensional shell to its inner radius of curvature, controls
a point of view different from the eigenfunction expansion the effective dimensionality of the diffusion sheX—0 is

approach employed in Secs. IV C and IV D.

One necessary condition for the algebraic regifaed,
possibly, the plateguto be present at all is that the cutoff
time scaler is much larger than the time for the initial
transient, which is of0(1). For fixed values ofX and AR
large 7,AR? holds in all dimensions. For fixed values of
AR andX large mcxd’l holds ind>1. Asymptotically for
AR—», however, 7/AR?xX% 2 holds in d>2, while
7/AR?xIn(X) holds in . Therefore, the condition;>1
can always be met by sufficiently large valuesXodndAR.
Note that, as will be discussed in more detail belaiA R
exhibits the same asymptotic properties Ks/K,)? intro-
duced in Sec. IV D above.

the limit of an extremely thin diffusion shell and corre-
sponds, therefore, to an effectivelyl Situation. X—oe, on
the other hand, corresponds todadimensional sphere of
radius R;—o with an absorptivepoint in the center, i.e.,
R,—0. Equation(5.15 shows that in this combined lim@;
can remain finite also in@

In terms of the above defined quantities, a necessary
condition for the plateau regime to be clearly visible is
7>7, else the algebraic regime will cross over directly to
the exponential tail. Therefore, the ratio
3
—=— (5.18
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controls the existence of the plateau regime. This function state 2
grows monotonically witlAR, X, andd, and its asymptotic
properties follow directly from the asymptotic properties of
7 and 7 discussed above. It is instructive to look di1
first. Here we findq/7 — 3 in the limit AR—. Since there state 3
is no plateau in d, this value gives a lower limit for;/7* in
order for a plateau to exist. The difference between one and
higher dimensions is that fad>1 the ratior/7* becomes
infinite for X—oo, even for finiteAR, whereas in one dimen-
sion 7/7* always remains small. We conclude, therefore, that
a plateau regime will be seen in dimensions two and higher,
provided that the values of andAR are large enough. This
conclusion is also supported by the numerical results pre-
sented in Sec. IV.

One has to note that the behavior of the ratit™ is
different from the ratio of the lowest eigenvaluéd&,/K,
analyzed in Sec. IV D. SincK, is practically constant for

largeX and 1f; is an estimate fok?, the behavior oK,/K; byt not the others, or even all of them may percolate. Note
is similar to that ofy/r, presented above,/K;<X@ 22 that, due to the high dimensionality of the state space, inde-
for d>2 andK, /K, =« In(X) in 2d. This behavior was also pendent percolation of different partitions is possiile.
obtained in the numerical results of Sec. IV D. EquationHowever, having neither percolate requires special geom-
(5.18, on the other hand, exhibitﬁlq-*ocxd for d>2 and etries and is unlikely to be encounter¥d.
7l ™« X?/In(X) for 2d. The reason for this discrepancy is Thermal fluctuations can—in general—be modeled suc-
that 7* is actually an estimate for the center of the transitioncessfully as a random walk in some state sg4c& Confor-
area between the algebraic regime and the plateau regimmational fluctuations of proteins, particularly at physiologi-
while K,/K; is an estimate for the range of the plateau re-cal temperatures, are no exception to that. Fluctuations of the
gime only. The different behavior of both ratios demonstratemacroscopic state of a protein arise in this picture from the
that, together with the plateau regime, also the range of theandom walk leaving a patch corresponding to one mac-
transition regime grows witlx. rostate, and entering the patch of another macrostate. During
the time the random walk stays in that patch the protein stays
in that macrostate, until it leaves the patch again, either to
enter the one it came from or to enter another, see also Fig.
12. We will call this approach theandom walk on state

At physiological temperatures, proteins fluctuatespace partitiongicture of macroscopic fluctuations.
strongly between different microscopic conformati6h&4° Due to the complicated interactions involved in a
On a macroscopic level, these microscopic fluctuationstrongly heterogeneous system like a protein, the random
manifest themselves as fluctuations between protein states whlk in protein state space has to be viewed as one on a very
different functionality. One simple, well-known example is a rugged potential surfac&:>¢Particularly in the low tempera-
protein acting as a passive ion channel which can be either iture regime, this ruggedness imposes strong limitations on
an open or a closed sta®>'Other examples are fluctuations the parts of state space that are accessible at all, a feature
of transport proteins between states of different binding acknown as “broken ergodicity>"°® Although there has been
tivity for the ligand?3® or fluctuations of catalytic proteins considerable work on stochastic processes on rugged poten-
between states of different catalytic effectivity. We will ad- tials, the properties of macroscopic fluctuations due to rug-
vocate here a new generic—albeit abstract—view for the deged potential random walks on partitions is completely un-
scription of these macroscopic manifestations of microscopi&known up to now. Nevertheless, they could probably give
conformational fluctuations. very interesting new insights into the low-temperature be-

Proteins are an example of complex systems with a highhavior of glasses and of proteins.
dimensional state spac&This space of microscopic confor- Here, however, we will be concerned with the high tem-
mations can be partitioned into sets corresponding to theerature regime. In this regime, random walks on rugged
different macroscopic protein states. Usually, several micropotentials can be viewed on macroscopic length scales as
scopic conformations that are close to each other in statiee diffusion with some suitably renormalized diffusion
space will belong to the same macroscopic state and wiltoefficient>®®It is also known that, e.g., Misbauer data on
form a—more or less extended—individual patch. All protein fluctuations can be described successfully using an
patches that belong to one particular macroscopic state thezifective temperature-dependent diffusion coefficient in a
make up one partition set; see Fig. 12. There are severamooth, slowly-varying potenti&-3®We will, therefore, as-
relevant topologies for the respective structures of the partisume in the following that the random walk in the protein
tion regions in that high-dimensional state space; one or sexconformational state space can be described in a first ap-
eral of them may percolate throughout the entire state spacproximation as free diffusion.

state 1

FIG. 12. Sketch of the state space partitioning.

VI. GENERIC DESCRIPTION OF MACROSCOPIC
PROTEIN FLUCTUATIONS
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corresponds to closed channel sté&fek.enters that part at
Ry, and stays there until it leaves the shell by crossing the
boundary aR, again.R; corresponds to the size of the full
state space, and the relative size of the state space corre-
sponding to the open state is given kR(o(Rl)d, d being the
state space dimension. Using an outer boundary condition
(2.10D instead of the reflective conditidi2.10a would cor-
respond to a situation where the shell corresponding to
closed states is again surrounded by the remaining state
space corresponding to open states again. This is not a likely
situation here, but would be relevant if a larger number of
different macroscopic states were involved.
The conditional probability of observing a channel in the
closed state at timé, given that it switched to the closed
boundary of state space state at=0, is the probability of finding the random walk at
all in the closed states shell at timheunder initial condition
FIG. 13. Sketch of the state space partitioning for the ion channel opening2.7). This is identical to our observabM(t), which was the
and closing fluctuations. ligand concentration in the shell in the ligand migration in-
terpretation of the model. As noted above, the observable
usually reported in measurements of ion channel fluctuations

The open-state/closed-state fluctuations of passive iot$ the distribution of closing times. Since at tirhehe pro-
channel proteins are a very suitable candidate for applyingeins that have a dwell time>t contribute toN(t), this
the scheme that we sketched above. In this case there isc@lantity is connected to the distribution of dwell times
simple, natural partitioning of state space, namely the opeflciosed7) Via
and closed states. In this approach, a channel that switches,

e.g., from the open to the closed _state can be thought Qf as N(t)=f AP gosed 7), 6.1)
crossing the boundary from a region of open-state configu- t

rations to a region of closed-state configurations. On the

other hand, there exists already a vast array of experimentéthe closed-state time distribution is given by

literature on the fluctuation properties of these channel pro-
teins; see e.g. Ref. 62, and references therein. Since single-
channel fluctuations can be monitored individually using the
patch clamp techniqu®, opening and closing times are
readily accessible for a statistical analysis. In particular, the A number of recent studi&s®5%9-"4undertake to explain
distribution of closing timesPyeedt), is often observed to thet %2 closed-state time distribution observed in many ion
exhibit an algebraic regime with & *? power law in many channel proteins. In those studies mainly one-dimensional
ion channel protein&~%7 models were considered. liger's microscopic defect diffu-

Although the mutual topology of the open and closedsion modéei? and Dosteret al’s percolation modéf are no-
state partitions is not known, i.e., it is not known whethertable exceptions. However, the latter authors assume that the
only one or both of them percolate, it is reasonable to assum@andom walk is restricted to the largest cluster of a bond
that there is a much smaller number of open states than gfercolation system, and the nature of the state space parti-
closed states, since open channels require a much more rening remains very unclear in their work.
stricted arrangement of atoms. We can, therefore, assume In all of these models a discrete configuration space was
that the closed state partitions result in one or more isolatedmployed. Although such an approach may give results dif-
open patches. The existence of several different patches éérent from our continuous model if a small number of states
isolated open states in state space, separated from each othee involved, the results will be qualitatively equivalent for a
by areas of closed states, would correspond to a situatiolarge number of states. Incidentally, the latter case is just the
where several, structurally very different, open channel conlimit for which the t~*? distribution is obtained in those
formation classes exist. We will assume in the following thatmodels®®-6
this is not the case, and that a single patch of open states Few-state-models, on the other hand, employed usually
exists in state space, which is surrounded by closed statefar an analysis of ion channel experimefts®’’ are moti-
Assuming spherical symmetry in state space, we immedivated mainly by multiexponential fits to dafalt is well-
ately arrive at a picture of the state space partitioning, Figknown, that few-state models are able to reproduce quite
13, that is identical to the picture connected with ligand mi-complicated behavidf provided the number of parameters
gration, Fig. 1, with the exception of a different naming of is large enough, see also the discussion in Refs. 79, 80, 81.
the various parts. However, such models do not provide any insight into ion

Equations(2.7)—(2.1039 then describe the random walk channel fluctuations, since they are not based on an under-
of an ion channel protein in that part of its state space whiclstanding of microscopic protein dynamics. Our approach, on

open states

d
Pelosedt) = — dt N(t). (6.2
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the other hand, provides a route for systematically investigatrebinding experiments is by no means conclusive evidence
ing effects of state space dimensionality, which is not posfor a 1d process taking place. On the contrary, such an alge-
sible in few-state models. braic decay gives no information on the space dimensionality
In light of our results in Sec. IV, i.e., thdl(t)ct~ Y2  of the process, as we have shown.
behavior for wide parameter regimes, and the connection of However, there is a clear experimental signature which
N(t) and Pq,sedt) Vvia Eq.(6.2), it is no surprise that one- differentiates between one-dimensional diffusion and an ef-
dimensional models reproduce the’? closed-time distribu-  fectively higher-dimensional process; we have demonstrated
tion. Any description that models the patch of closed states ithat the observation of a plateau in a log—log plotNgf) vs
configuration space as a one-dimensional interval will ext following the algebraic decay regime indicates that the dif-
hibit this behavior. fusion path of the ligand is effectively higher-dimensional.
However, our results for general dimensions raises théts existence is controlled mainly by the effective dimension-
caveat that one should not take this finding as a proof for thality of the diffusion shell, i.e., the parametetsand X, see
one-dimensional structure of the effective ion channel stat&ec. IV D. We note that plateaulike regimes Ni{t) have
space. Models employing higher-dimensional state spacedready been observed, but have been attributed partly to
also arrive at the same closed-time distribution for a wideescape into the solvefprocesses 1l and IV of Austiet al.*
range of parameter values. The particular properties of theee also Refs. 85, 860ur results indicate that these regimes
actual protein configuration space will be reflected only incould also be a signature of the three-dimensionality of the
deviationsfrom the algebraic behavior, the plateau regimeligand migration process.
being one important signature for that. We note, in closing, The existence of the plateau in dimensions three and
that the “tether-ball” modeP? advocated recently—on the higher can be directly related to Polya’s result of nonreturn
basis of site-directed mutagenesis experiments—for the inaof an unbiased random walker to the origin in dimensions
tivation of certain ion channef§;#* belongs to the class of three and higher. An analysis of this claim was presented in
models that exhibit a state space with a dimenslor. Secs. IV C, IV D, and V. In two dimensions the plateau, or in
this case “pseudo-plateau,” is attributable to the marginal
logarithmic decay of probability in two dimensions.
VIl. SUMMARY AND DISCUSSION Our model and results can also be used to analyze the

We have shown that the appearance ijéz regime for closing time distribution in ion channel fluctuations, as de-
the unreacted fractiohl(t) in a reaction—diffusion process scribed briefly in Sec. VI. A full treatment of this topic will
described in Eqs(2.7)—(2.10 is quite robust and indepen- be the subject of a separate paper.
dent of the space dimensionality of the process. It will appear
whenever there exists a diffusion region of shell-like struc-ACKNOWLEDGMENTS
ture of sufficient width, controlled by an inner reactive .
boundary condition. Due to the independence of space di- 'he Work of D.L.S. was supported in part by the DOE
mension, one can conclude that the detailed form of the outéfnder Grant No. DE-FG03-93ER25155 at the University of
boundary is irrelevant for the appearance of the algebrai€\fizon@. Much of the work in this paper was done during

regime. The insensitivity of these results to space dimensiofiollaborative visits, funded by a NATO Collaborative Re-
provides alsoa posteriori support for our modeling the search Grant, which the authors gratefully acknowledge.

ligand diffusion process as isotropic. Clearly, the protein ma-
trix itself is far from isotropic, but it is important to note that *R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C.
there exist universal results for the time-dependence of the Gunsalus, Biochemistry4, 5355(1975.

. . : N. Alberding, S. S. Chan, L. Eisenstein, H. Frauenfelder, D. Good, I. C.
decay Oﬁ\l(t) which arelndependenof even relatlvely gross Gunsalus, T. J. Nordlund, M. F. Perutz, A. H. Reynolds, and L. B. So-

features of the model. rensen, Biochemistr§7, 43 (1978.

We saw in Sec. lll that for an absorbing inner boundary 3D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M. C. Marden, L.
and no outer boundary,\l(t) shows atfllz decay in one ?glglfzg(fésg Reynolds, L. B. Sorensen, and K. T. Yue, Biochemistry
d|men3|9n. ,In tWO d|m¢n5|on§ the decame) 1S Ioganth- 4A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B.
mic, while in higher dimensiondl() assumes a NONZero  sauke, E. Shyamsunder, and R. D. Young, Proc. Natl. Acad. Sci.82SA
value, the Polya limit. Nevertheless, the final decay to that 5000(1985.
limit is algebraic, with an exponer(d—2)/2. Incidentally, SA. Ansari, E. Dilorio, D. Dlott, H. Frauenfelder, I. E. T. Iben, P. Langer, H.

. . . . . . Roder, T. B. Sauke, and E. Shyamsunder, Biochem5r8139(1986.

that exponent '$ again 1/_2 in three d'mensmns' However, M6 A~ Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M.
the geometry discussed in the preceding paragraph, absorpk. Hong, I. E. T. Iben, J. B. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A.
tion in the boundary layer—effectively adlsituation— Schulte, P. J. Steinbach, J. Vittitow, and R. D. Young, Biochemiy
dominates the algebraic part of the overall decayN¢f). 337(1987. . . .

ical 9 hi pl . . . yNGD) "H. Frauenfelder, N. A. Alberding, A. Ansari, D. Braunstein, B. R. Cowen,
N.ume”.ca support of this 9a|m was _g|Ven n Sec.-IV B, for M. K. Hong, E. Icko, B. J. Johnson, S. Luck, M. C. Marden, J. R. Mou-
dimensions one through eight inclusive. An analytical proof, rant, P. Ormos, L. Reinisch, R. Scholl, A. Schulte, E. Shyamsunder, L. B.
along with an analysis of the conditions under which the gzrensgen, F(’)-ZJ-(SégiSbach, A. Xie, R. D. Young, and K. T. Yue, J. Phys.

f f em.94, 1024(1 .

result breaks down, V\.Ias given in Sec. IV (Eé,z . ) 8D. A. Case and M. Karplus, J. Mol. Biol32 343(1979.
Therefore, the existence of an algebrgic’” regime in 9N. Agmon and J. J. Hopfield, J. Chem. Phy8, 6947 (1983.

the decay of the ligand fractioN(t) in ligand migration and  °N. Agmon and J. J. Hopfield, J. Chem. Phy$, 2042(1983.

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996



1936 W. Nadler and D. L. Stein: Biological transport processes

1H. Frauenfelder, Naturwissens. Rurg8, 311 (1985. 52D, L. Stein,Spin Glasses and BiologyVorld Scientific, Singapore, 1992

2\, Doster, Ch. Holtzhey, H. Miesmer, F. Post, and R. A. Tahir-Kheli, J. 53C. M. Newman and D. L. Stein, Ann. Inst. Henri Poincate 249(1995.
Biol. Phys.17, 281 (1990. 54D. Stauffer and A. Aharonyintroduction to Percolation Theory2nd ed.

3. Nadler and D. L. Stein, Proc. Natl. Acad. Sci. UB8, 6750(1991). (Taylor and Francis, London, 1992

“Related work on the Y2 law in 3d was done independently in J. B. 55H. Frauenfelder, S. G. Sligar, and P. Wolynes, Scie2ioé 1598 (1991).
Miers, J. C. Postlewaite, T. Zyung, S. Chen, G. R. Roomig, X. Won, D. D.%6s_ A, Kauffman,Origins of Order(Oxford University, Oxford, 1998
Dlott, and A. Szabo, J. Chem. Phy83, 8771 (1990; however, these 57R. G. Palmer, Adv. Phys81, 669(1982; Heidelberg Colloguium on Spin
authors discuss binding to protoheme in solution, i.e., heme without the Glassesedited by J. L. van Hemmen and I. MorgenstéBpringer, Ber-
protein shell, rather than the ligand migration process. lin, 1983, pp. 234-251.

'5C. D. Levermore, W. Nadler, and D. L. Stein, Phys. Rev5E 2779  58p_ L. Stein and C. M. Newman, Phys. RevSE, 5228(1995.

16(1995- _ 9p, A. Ferrari, S. Goldstein, and J. L. Lebowitz, Statistical Physics and
S. D. Druger, M. A. Ratner, and A. Nitzan, Phys. Rev3B 3939(1985. Dynamical Systems, Rigorous Resuddited by J. Fritz, A. Jaffe, and D.

'"M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 577 (Birkhauser, Boston, 1985 pp. 405—441.

1878' 6849(1983. _ 60R. Zwanzig, Proc. Natl. Acad. Sci. US36, 2029(1988.

A K. Harrison and R. Zwanzig, Phys. Rev.32, 1072(1985. S1W. Nadler and K. Schulten, Proc. Natl. Acad. Sci. USH 5719(1984).
R. Hilfer and R. Orbach, Chem. Phyk28 275(1988. 2p, | auger, Biophys. J53, 877 (1988.

20
A. Perera, B. Gaveau, M. Moreau, and K. A. Penson, Phys. Let6%\ 835ingle-Channel Recordingdited by B. Sakman and E. Neh@enum,

158 (199)).

2'R. Zwanzig, Chem. Phys. Lett64 639 (1989.

22M. Tachiya, J. Chem. Phyg0, 238 (1979; Rad. Phys. Chen21, 167
(1983.

ZA. Szabo, D. Soup, S. H. Northrup,
77, 4484(1982).

24B. 1. Hunt and J. G. Powles, Proc. Phys. S88, 513 (1966.

25W. Feller, Probability and its ApplicationgWiley, New York, 1973, Vol.
2.

26/, Szabo, K. Schulten, and Z. Schulten, J. Chem. PRgs4350(1980.

27K, Schulten, Z. Schulten, and A. Szabo, J. Chem. Pgs4426(1981).

2. Nadler and K. Schulten, J. Chem. Phgg, 151 (1985.

2H, s. Carslaw and J. C. Jaeg€pnduction of Heat in Solid§Oxford
University, Oxford, 1958

303, Crank, The Mathematics of DiffusiorifOxford University, Oxford,
1975.

3IN. Agmon, J. Chem. Phy®1, 2811(1984.

32M. J. Lighthill, Introduction to Fourier Analysis and Generalized Func-
tions (Cambridge University, Cambridge, 1958

33M. Abramowitz and I. A. Stegunidandbook of Mathematical Functions
(Dover, New York, 1972

34H. Sano and M. Tachiya, J. Chem. Phy4, 1276(1979.

%see, for example, G. ArfkeMathematical Methods for Physicistca-
demic, New York, 1966

3|, S. Gradshteyn and I. M. Ryzhikables of Integrals, Series, and Prod-

New York, 1983.

84L. S. Liebovitch and J. M. Sullivan, Biophys. 25, 979 (1987).
%R. McGee Jr., M. S. P. Sansom, and P. N. R. Usherwood, J. Memb. Biol.

102, 21(1988.

and J. A. McCammon, J. Chem. PhyS“G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Proc. Natl. Acad. Sci.

USA 85, 1503(1988.

7G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Biophy£4).1165

(1988.

%8\We note that the justification of the use of boundary conditi@h8) and

(2.10b for the description of random walks that cross from one partition
to another is by no means trivial. A naive derivation of a such a boundary
condition, e.g., starting from a discretized description and going to the
continuum limit, would result in a fully absorptive boundary condition at
Ry; compare Eq.(2.1038. However, together with the initial condition
(2.7) that does not make much sendgt) would be zero for all times.
Nevertheless, in principle, such a boundary condition is correct: almost all
random walks will enter the partition only for an infinitesimally short
time, and then leave it again across the boundary they came. The walks we
are concerned with, on the other hand, are only those which caeacbe
ognizedto have entered the state space partition, i.e., they must have
entered for some time long enough so that the proteins can be recognized
experimentally as closed channels. Since it is only this subclass of random
walks that we want to describe, we end up with the reactive boundary
condition (2.5), or Eq. (2.9 after rescaling. This discussion also makes

clear that the parametet and, therefore, the time and length scateand
I, are connected to the experimental time resolution.

9G. L. Millhauser, Biophys. J57, 857 (1990.

OR. E. Oswald, G. L. Millhauser, and A. Carter, Biophys53, 857 (1991).

"IC. A. Condat, Phys. Rev. 89, 2112(1989.

2C. A. Condat and J."&le, Biophys. J55, 915(1989.

“41A. Briinger, R. Peters, and K. Schulten, J. Chem. PBgs2147(1985. *W. Doster, W. Schirmacher, and M. Settles, Biophy57.681(1990.

424 _U. Bauer, K. Schulten, and W. Nadler, Phys. Re\3® 445 (1988. 7AL. S. Liebovitch, L. Y. Selector, and R. P. Kline, Biophys.&B, 1579

43This follows from Koenig's theorem, a very general result on the zeros of (1992.

Padeapproximants; see A. S. Houshold@he Numerical Treatment of a °S. J. Korn, and R. Horn, Biophys. 54, 871(1988.
Single Nonlinear EquatiofiMcGraw—Hill, New York, 1970. 7°0. B. McManus, D. S. Weiss, C. E. Spivak, A. L. Blatz, and K. L.

44C. W. GardinerHandbook of Stochastic Methotpringer, Berlin, 1988 Magleby, Biophys. J54, 859 (1988.

4SH. Risken,The FokkerPlanck EquationSpringer, Berlin, 1984 ""J. D. Becker, J. Honerkamp, J. Hirsch, U."Bep and R. Greger, Eur. J.

“N. G. van Kampen,Stochastic Processes in Physics and Chemistry Physiol.(Pflugers Arch) 426, 328 (1994.

(North—Holland, Amsterdam, 1992 8D, Colquhoun and F. J. Sigworth, in Ref. 63, p. 191-263.

4TH. Frauenfelder, G. A. Petsko, and D. Tsernoglu, Nafi8@ 558(1979. L. S. Liebovitch, Biophys. J55, 373 (1989.

484, Frauenfelder, irStructure and Dynamics: Nucleic Acids and Proteins ®°R. Horn and S. J. Korn, Biophys. 35, 379 (1989.
edited by E. Clementi and R. H. Sarntadenine, New York, 1988 p. 810. B. McManus, C. E. Spivak, A. L. Blatz, D. S. Weiss, and K. L.
369-376. Magleby, Biophys. J54, 383(1989.

494 Frauenfelder, irStructure and Motion: Membranes, Nucleic Acids and 82C. M. Armstrong and F. Bezanilla, J. Gen. Physitd, 567 (1977.
Proteins edited by E. Clementi and R. H. Sarmadenine, New York,  %T. Hoshi, W. N. Zagotta, and R. W. Aldrich, Scien260, 533 (1990.
1985, p. 205-217. 84W. N. Zagotta, T. Hoshi, and R. W. Aldrich, Scien260, 568 (1990.

%0B, Hille, lonic Channels and Excitable Membranginauer, Sunderland  8M. K. Hong, E. Shyamsunder, and R. H. Austin, Phys. Rev. I68t2673

ucts corrected and enlarged editi¢Academic, New York, 1980
STW. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannahy;
merical RecipegCambridge University, Cambridge, 1992
38W. Nadler and K. Schulten, J. Chem. Phgd, 4015(1986.
3%E. Pines, D. Huppert, and N. Agmon, J. Chem. P188;.5620(1988.
4OM. Tachiya (private communication

MA, 1984). (199).
51B. Hille, in The Harvey Lectures, Series,§2lan R. Liss Inc. 1988 p. 8. D. Tian, J. T. Sage, V. Srajer, and P. M. Champion, Phys. Rev. &&tt.
47-69. 408 (1992.

J. Chem. Phys., Vol. 104, No. 5, 1 February 1996



