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Reaction–diffusion description of biological transport processes
in general dimension
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We introduce a reaction–diffusion system capable of modeling ligand migration inside of proteins
as well as conformational fluctuations of proteins, and present a detailed analytical and numerical
analysis of this system in general dimension. The main observable, the probability of finding the
system in the starting state, exhibits dimension-dependent as well as dimension-independent
properties, allowing for sharp experimental tests of the effective dimension of the process in
question. We discuss the application of this theory to ligand migration in myoglobin and to the
description of gating fluctuations of ion channel proteins. ©1996 American Institute of Physics.
@S0021-9606~96!50805-4#

I. INTRODUCTION

Several biological proteins have their active site not on
their surface but, rather, buried deep inside the protein ma-
trix. A central example are heme proteins where the ligand, a
small gas molecule such as O2 or CO, has to migrate through
the protein matrix in order to reach its binding site. The
motion of a ligand within a protein matrix is, therefore, a
process of fundamental biological importance. Both the
ligand binding and the ligand migration processes in myo-
globin have been studied extensively,1–7 but a complete un-
derstanding of either is still lacking.

Early work1 already made it clear that the problems in-
volved were complicated, and that both ligand migration and
binding kinetics are nontrivial. For example, both x-ray dif-
fraction studies and molecular dynamics simulations8 re-
vealed that ligand migration could not occur within a static
protein in an ‘‘average’’ conformation—fluctuations are es-
sential to open voids large enough through which the ligand
can travel.3 Other complications include the ligand affecting
the medium through which it travels, anisotropy and inho-
mogeneity of the protein matrix, and solvent interactions
with the protein.

Because of the protein’s inhomogeneity, it is reasonable
to suppose that voids occur only in preferred locations. Since
the ligand cannot leave a site until a conformational fluctua-
tion opens a nearby void, one could conclude that the inter-
nal ligand path is effectively one-dimensional. By one-
dimensional, we mean that the ligand always retraces its
previous path when it reverses its direction of motion. How-
ever, whether the actual ligand path in myoglobin is one- or
higher-dimensional has not yet been resolved. On the other
hand, the experimentally obtained time,1 temperature,1,4 and
pressure7 dependencies of ligand diffusion can be interpreted
and understood correctly only with this information. It is also

necessary for a deeper insight into protein-internal fluctua-
tions and their effects. Understanding the ligand migration
process therefore requires,as a prerequisite, a determination
of the dimensionality of the ligand path.

Experimental studies of this process have employed a
variety of techniques. One of the oldest, and still most
widely used, of these is the technique of flash photolysis.1

Ligands bound to the heme site are separated by a pulse of
laser light. The numberN(t) of unrecombined ligands at
time t.0 is then monitored. In some cases, rebinding occurs
almost immediately. In others, the ligand wanders through
the protein matrix for a while before recombining with the
heme group. In the usual glycerol–water solvent, the latter
process requires temperatures above roughly 170 K; below
that, the solvent’s~and possibly the protein’s! glass transition
freezes out the necessary conformational fluctuations. We
note also that the ligand rebinding process per se appears to
be coupled to protein relaxation processes.9,10

When ligand migration does occur, it is typically seen to
exhibit a t21/2 behavior for a range of temperature and time
scales, before crossing over to an exponential at longer
times.11 Because the probability of return to the starting point
in a 1d random walk falls off ast21/2, the observed behavior
has been taken as an indication that ligand migration in myo-
globin could be a one-dimensional diffusion process.12

In a previous paper,13,14we showed that this conclusion
is incorrect for a number of reasons. First of all, the behavior
of the observableN(t) is different from the probability of
return to the origin; see also Sec. II of this paper. More
importantly, however, modeling ligand migration through the
protein matrix as diffusion in ad-dimensional shell and us-
ing boundary conditions appropriate for the actual biological
situation, we find that the falloff forN(t) is t21/2 during
intermediate timesindependentof space dimension. We pro-
posed a new, clear-cut experimental test, capable of distin-
guishing higher-dimensional from one-dimensional
behavior—the presence~or absence! of a plateau region be-
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tween the algebraic decay regime and the exponential decay
regime. This may already have been observed in the first
extensive published study of the problem,1 indicating that the
diffusion path is actually three dimensional.

We have already indicated that—ultimately—the migra-
tion of a ligand inside the protein matrix has to be viewed as
diffusion in a fluctuating environment. We note that work on
this aspect of the problem has already begun with our study
of diffusion on a fluctuating lattice.15 We show there~see
also earlier work16–21! that the effect of fluctuations is mainly
to renormalize the effective diffusion coefficient, and we pro-
vide a simple renormalization group procedure for comput-
ing it in one dimension. Because the effective diffusion co-
efficient depends both on the average probability of a
channel between neighboring sites being present, and on the
correlation time of the opening and closing fluctuations of a
channel, an understanding of this problem is essential for
interpreting temperature and pressure dependencies of the
diffusion process. It is not needed, however, for an under-
standing of the time dependence. Since we are concerned
here only with the time-dependence of diffusion, this fact
allows us to study the more standard diffusion problem be-
low, and we will leave a study of temperature- and pressure-
dependence to a future paper.

In this paper we continue and extend our theoretical
study, providing new evidence for our conclusions and sup-
plying details omitted in Ref. 13. The generic mathematical
model we introduced there for the description of ligand mi-
gration processes—free diffusion in ad-dimensional shell
with appropriate boundary conditions—will be analyzed in
detail. It is surprising that the general behavior of such a
relatively simple diffusion model has not, to our knowledge,
been analyzed before, apart from some special cases.22–24

The reaction–diffusion model we will discuss here is of
a much more general character than the initial motivation, to
describe ligand migration in proteins, suggests. It will be
demonstrated that it can also be viewed as a simple generic
microscopic model for the fluctuations of a protein between
different macroscopic states. Therefore, we will consider it
not only in one, two and three dimensions, necessary for
investigating the path dimensionality in ligand migration.
Rather, since the relevant state space of such complicated
systems like biopolymers is expected to have a high dimen-
sionality, we will try to explore the features of our model
also in much higher dimensions. It will be seen that the fea-
tures noticed in two and three dimensions will be much more
pronounced in higher dimensions.

The plan of the paper is as follows:
In Sec. II we introduce the reaction–diffusion model13

which serves as a basis for studying the time-dependence of
ligand diffusion in heme proteins.

In Sec. III we study the problem analytically. We solve it
exactly for special boundary conditions in one and three di-
mensions and use Laplace transform methods to examine the
eventual onset of dimension-dependent decay.

In Sec. IV we present detailed numerical studies, based
on eigenfunction expansions, for general dimensions. We
demonstrate the ubiquity of thet21/2 law for boundary con-

ditions corresponding to biological parameters, and find the
appearance of the plateau region in dimensions greater than
one. We complement these numerical studies with an analyti-
cal proof of thet21/2 decay in any dimension for appropriate
boundary conditions. We also examine there the connection
between our observed plateau and Polya’s result of nonreturn
to the origin for random walks in dimensions greater than
two.25

In Sec. V we present a generalized moment analysis26–28

which provides an alternative method for studying the pla-
teau regime and the long-time aspects of decay. This analysis
reinforces our earlier conclusions, and provides additional
insights into the detailed behavior of the decay. It also sup-
plies us with a simple means of determining under what
conditions the onset of the plateau can occur.

In Sec. VI we will discuss in more detail the applicabil-
ity of our model and our results to the description of general
state space fluctuations of proteins. Of particular interest here
are opening fluctuations of ion channel proteins. It will be
seen that the principal observable in the ligand migration
case is closely related to the closing time distributions of
these proteins.

A discussion of our results, including their structural sta-
bility with respect to changes in boundary conditions and
lack of isotropy, and our final conclusions will appear in Sec.
VII.

II. THE MODEL

As indicated in the Introduction, we will describe the
migration of a ligand through protein matter in globular pro-
teins as a free diffusion process in ad-dimensional shell. In
doing so, the protein matrix is assumed implicitly to be ho-
mogeneous and isotropic. Although this simplifying assump-
tion might seem at first to be wholly inappropriate for pro-
teins, many general conclusions that can be drawn from our
results are completely unaffected by it; see the final discus-
sion in Sec. VII.

The physical situation of an active site inside a globular
protein is sketched in Fig. 1. Assuming spherical symmetry
for the protein, the active site, and its location inside the
protein, we can disregard any angular degrees of freedom.
The diffusion equation for the radial probability distribution
p(r ,t) of the ligand is then

]

]t
p~r ,t !5DF ]2

]r 2
1
d21

r

]

]r Gp~r ,t !. ~2.1!

Since the motion of a ligand through the dense protein ma-
trix has to be facilitated by protein internal fluctuations, the
motion of the ligand is actually coupled to the opening and
closing of local channels and/or the creation of local free
volumes. As discussed in the Introduction, such processes
result mainly in a renormalization of the effective diffusion
coefficientD.15 Therefore, the diffusion coefficientD in Eq.
~2.1! has to be considered to be renormalized with respect to
these local channel/free volume fluctuations within the pro-
tein matrix. The value ofD will depend on the interplay
between the time scale of measurement and the rate of physi-
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cally relevant fluctuations, and, therefore, on temperature,
pressure, and other environmental parameters experienced by
the protein.

One boundary condition for Eq.~2.1! arises from the
ligand binding process which takes place at the active site
within the protein. Ligands are assumed to be absorbed with
a specified rateg upon arrival at the site, i.e.,

d

dt
N~ t !52gp~R0 ,t !, ~2.2!

whereR0 is the size of the active site, which, in the case of
myoglobin, is of the order of the size of the heme cavity, i.e.,
several Å. In Eq.~2.2!, N(t) is the number of ligands still in
the protein matrix,

N~ t !5E
R0

R1
drr d21p~r ,t !, ~2.3!

and this is also the main observable that is monitored experi-
mentally when investigating the rebinding process. Using the
radial probability current,

j ~r ,t !52D
]

]r
p~r ,t !, ~2.4!

the absorption Eq.~2.2! follows from the reactive boundary
condition

j ~R0 ,t !52gp~R0 ,t !, ~2.5!

for Eq. ~2.1!.
The reactive boundary condition~2.5! can be extended

readily to more general situations, including nonexponential
rebinding arising from~i! proteins frozen into conforma-
tional substates, giving rise to a distributiong~g! of rate co-
efficientsg, or ~ii ! the rebinding process being dynamically
coupled to other degrees of freedom, giving rise to a fluctu-
ating rate coefficientg(t). These complications, however, are
unlikely to play a significant role at temperatures and time
scales in which diffusion of the ligand through the protein

matrix makes an important contribution to the observed re-
binding curve, and, therefore, we confine our attention to Eq.
~2.5!.

The outer boundary connects the protein matrix with the
surrounding solvent. In this contribution we will be con-
cerned mainly with two different physical situations;~i! the
low temperature regime where the solvent is frozen, i.e., no
ligand can escape into the solvent, and~ii ! the concentration
of ligands in the protein is kept constant, namely one per
protein, so that no net flux across the protein–solvent inter-
face arises. Both situations are often realized experimentally,
and both are of great interest.1 Conveniently, both situations
give rise to the same mathematical description—a zero flux
or reflective boundary condition at some radiusR1, which
corresponds to the outer radius of the protein,

j ~R1 ,t !50. ~2.6a!

In the most general experimental situation, however, a
time-varying nonzero flux of ligands across the protein–
solvent interface could be possible. Depending on the actual
situation, the exchange of ligands between the protein and
the solvent could be described by a variety of equations. For
example, a reactive condition like Eq.~2.5! on the outer
boundary would describe an effective leakage of ligands into
the solvent with some rate, which is possible, e.g., when the
ligand concentration in the solvent is kept practically at zero.
The mathematics of a model with a reactive outer boundary
condition is only slightly different from what we consider
here, albeit much more tedious. We will show that the gen-
eral conclusions drawn from our results are largely insensi-
tive to the form of the outer boundary condition by consid-
ering also two special cases, namely a reactive boundary
with the samereaction coefficient as in Eq.~2.5!,

j ~R1 ,t !5gp~R1 ,t !, ~2.6b!

—note the sign change with respect to Eq.~2.5! due the
different directions of the outflux at the inner and outer
boundary—and a fully absorptive boundary,

p~R1 ,t !50. ~2.6c!

In this way we will be able to see the full spectrum of pos-
sible dynamical behavior resulting from different boundary
conditions, without introducing any additional parameters.
Equation~2.6b! is—together with Eq.~2.6a!—of particular
importance for the interpretation of the model in terms of
state space fluctuations of proteins; see Sec. VI below, while
Eq. ~2.6c! corresponds to a complete loss of the ligand into
the medium upon reaching the protein–solvent interface.

Finally, we use the initial condition

p~r ,0!5d~r2R0!/r
d21, ~2.7!

which facilitates direct comparison of our model with flash
photolysis experiments. The ligand enters the diffusion vol-
ume atR0, i.e., at the inner shell, where it can either rebind
immediately with rateg to the active site, or diffuse into the
protein matrix and be rebound later.

We can eliminate the dimensional constantsD and g
immediately by rescaling our space and time variables with

FIG. 1. Sketch of the ligand migration problem.
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the reactive time- and length scalestr5D/g2 and l r5D/g.
The new dimensionless variables are then gotten from the
transformationt→t/t r and r→r / l r . These dimensionless
variables will be used in the remainder of this paper. Our
rescaled diffusion equation is then

]

]t
p~r ,t !5F ]2

]r 2
1
d21

r

]

]r Gp~r ,t !, ~2.8!

with the inner boundary condition

]

]r
p~r ,t !U

r5R0

5p~R0 ,t !, ~2.9!

and with the respective outer boundary conditions

]

]r
p~r ,t !U

r5R1

50, ~2.10a!

]

]r
p~r ,t !U

r5R1

5p~R1 ,t !, ~2.10b!

p~R1 ,t !50. ~2.10c!

The initial condition, Eq.~2.7!, remains unchanged.
The rescaling leaves us with three dimensionless param-

eters for our model; the space dimensiond, and the—now
dimensionless—inner and outer shell radii,R0 andR1. Note
that all explicit dependencies on the diffusion and the reac-
tion coefficient have dropped out of the system~2.7!–~2.10!.
As already noted in the Introduction and to be discussed
more thoroughly below in Sec. VI, the model defined by Eqs.
~2.7!–~2.10! can be viewed equally well as describing the
internal fluctuations of a system with ad-dimensional state
space, withd possibly large. We will therefore analyze the
behavior of this model for generald.

III. EXACT RESULTS

In the following three subsections we will consider gen-
eral isotropic diffusion with an inner reactive boundary only,
i.e., we will consider the limitR1→`. By studying the prob-
lem first analytically in the absence of an outer boundary and
then, in Sec. IV, numerically with this boundary, we will be
able to clarify the behavior induced by its presence.

We will demonstrate how in this limit the problem can
be solved exactly in one and in three dimensions using
Green’s function techniques and the method of images. Al-
though these results can be found—in principle—in the
literature,29,30,31we find it pedagogically helpful to rederive
them here with our particular problem in mind. For general
dimensions exact results can be obtained for the Laplace
transforms of the observableN(t). These results allow a sys-
tematic study of the long time behavior. Although analytical
back transformation is not possible in general, it is possible
in one and three dimensions and provides a complementary
method for deriving the results obtained by the direct
method.

A. Exact solution in one dimension

After the limit R1→` has been performed, the actual
value of the inner boundary,R0, is not relevant anymore in
one dimension, and we will set it to zero, for simplicity.
Also, in order to distinguish this simplified one-dimensional
from the higher-dimensional treatment, we will replacer by
x here.

We can simplify the problem defined by Eqs.~2.8! and
~2.9! further by introducing the auxiliary function

g~x,t !5p~x,t !2
]

]x
p~x,t !. ~3.1!

It obeys the one-dimensional diffusion equation

]

]t
g~x,t !5

]2

]x2
g~x,t ! ~3.2!

along with the boundary condition

g~0,t !50. ~3.3!

In other words,g behaves like a probability density with an
absorber at the origin. From the auxiliary functiong the
original distributionp can be reconstructed via

p~x,t !5exE
x

`

dx8e2x8g~x8,t !, ~3.4!

which is the solution to Eq.~3.1!, using the property thatp
vanishes at infinity.g itself will be determined from Eqs.
~3.2! and ~3.3! using Green’s functions and the method of
images.

Consider first a particle whose probability density
G(x,t) obeys just Eq.~3.2!, i.e., diffusion on the infinite line,
with the initial condition that at time zero the particle is
found at some positionx0, i.e., G(x,0;x0)5d(x2x0). The
probability density is then easily seen to be

G~x,t;x0!5
1

A4pt
e2~x2x0!2/4t, ~3.5!

which is simply the Green’s function of Eq.~3.2!.
Consider now a particle whose probability density

F(x,t) obeys Eqs.~3.2! and ~3.3! with the initial condition
that at time zero the particle is found at somepositiveposi-
tion x0. That is, we are interested in diffusion on the positive
half-infinite line with an absorptive boundary condition at
the origin. The Green’s functionG(x,t;x0) would solve for
the initial condition and the diffusion equation, but not for
the boundary condition, Eq.~3.3!. In the method of images,
copies of the Green’s functionG(x,t;x08) with starting points
x08 outsideof the domain of interest, which is here~0,̀ !, are
added with appropriate weights so that the boundary condi-
tion can be satisfied. Choosing the starting points outside of
the domain of interest guarantees that the added functions do
not interfere with the initial condition. In our case, it is easily
seen that choosingx08 5 2x0 and a relative weight of21 for
a single additional Green’s function solves the problem. The
resulting probability density has, therefore, the form
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F~x,t;x0!5G~x,t;x0!2G~x,t;2x0!

5
1

A4pt
@e2~x2x0!2/4t2e2~x1x0!2/4t#. ~3.6!

Moreover,F is the Green’s function of Eq.~3.2! with bound-
ary condition~3.3!.

For the initial condition of the original probability den-
sity p we choose now the general formp(x,0)5d(x2x0),
with x0 again on the positive axis. Then the initial condition
for the auxiliary functiong is given by

g~x,0!5d~x2x0!2
]

]x
d~x2x0!. ~3.7!

Now we can employ the well-known technique for comput-
ing the general solution from the Green’s function, in this
caseF, and the particular initial condition,

g~x,t !5E
0

`

dx0F~x,t;x0!g~x0,0!, ~3.8!

where the integral has to be evaluated withg interpreted as a
generalized function.32 The full solution forg is then given
by

g~x,t !5E
0

`

dx0d~x2x0!S 11
]

]x0
D F~x,t;x0!

5
1

A4pt
@e2~x2x0!2/4t2e2~x1x0!2/4t#1H 1

Apt
@~x

2x0!

3e2~x2x0!2/4t1~x1x0!e
2~x1x0!2/4t#J . ~3.9!

The original distributionp is obtained by evaluating Eq.
~3.4!. After some algebra the answer can be simplified to

p~x,t;x0!5
1

A4pt
@e2~x2x0!2/4t1e2~x1x0!2/4t#

2ex1x01t erfcFx1x012t

A4t G , ~3.10!

where erfc is the complementary error function.33

Finally, setting the starting point to zero, i.e.,x050,
brings us back to our model description of ligand migration.
The unreacted fraction of ligands is then obtained from the
integration in Eq.~2.3! to

N1d~ t !5et erfc~At !. ~3.11!

Using the behavior of erfc for large values of the argument,33

it is easy to show thatN1d(t) exhibits an asymptotic alge-
braic t21/2 decay after an initial transient of ordert'1,

lim
t→`

N1d~ t !→A 1

pt
1O~ t23/2!. ~3.12!

B. Exact solution in three dimensions

Again we introduce the auxiliary functiong, defined in
Eq. ~3.1!, which, this time, has to obey the three-dimensional
radial diffusion equation

]

]t
g~r ,t !5

]2

]r 2
g~r ,t !1

2

r

]

]r
g~r ,t !, ~3.13!

together with the boundary condition

g~R0 ,t !50. ~3.14!

Also, for the initial condition of the original distribution we
choosep(r ,0)5d(r2r 0)/r

2, with r 0<R0 . Then the initial
condition forg has the form

g~r ,0!5d~r2r 0!/r
22

]

]r
d~r2r 0!/r

2. ~3.15!

The original distributionp can—again—be reconstructed
from g using Eq.~3.4!.

We will use the Green’s function technique for the final
determination ofg again. However, the derivation of a
Green’s function for Eqs.~3.13! and ~3.14! is somewhat
more complicated than it was in the one-dimensional case.
Nevertheless, we will be able to utilize some of the results
from the previous section.

Consider now a particle whose probability distribution
H(r ,t) obeys Eqs.~3.13! and ~3.14! and starts at a radius
r 0.R0 , i.e., it performs a free diffusion in the infinite shell
with inner radiusR0. First we introduce a new function
h(r ,t) by the relationH(r )5h(r ,t)/r . Thenh(r ) satisfies

]

]t
h~r ,t !5

]2

]r 2
h~r ,t ! ~3.16!

which is the simple one-dimensional diffusion equation. This
immediately implies that one solution to Eq.~3.13! is pro-
portional toG(r ,t;r 8)/r for some fixedr 8, with G being the
one-dimensional Green’s function. However, this cannot by
itself be the solution for a freely diffusing particle; it is easily
seen that the integrated probability density diverges ast→`.
The presence of an absorbing boundary Eq.~3.14! is helpful
here and allows us to use the method of images again. Add-
ing two one-dimensional Green’s functionsG(r ,t;r 8), one
centered atr 85r 0 with weight 11 and one centered at
r 852(r 022R0) with weight21 satisfies the boundary con-
dition ~3.14! and the initial condition in the domain~R0,`!.
The final form of the three-dimensional radial Green’s func-
tion H is then

H~r ,t;r 0!5
1

rR0
$G~r ,t;r 0!2G@r ,t;2~r 022R0!#%,

~3.17!

and it turns out that satisfying the boundary condition solves
the divergence problem; the divergent parts cancel and the
integrated probability density of this function is bounded
from above by unity.

Let us pause here for a moment and investigate some
properties of the diffusion process described by the Green’s
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functionH. The fraction of particles remaining at timet in
the shellr.R0 is given after spatial integration by

NH~ t !512
R0

r 0
erfcS r 02R0

A4t D . ~3.18!

Asymptotically for long times this becomes

lim
t→`

NH~ t !→
r 02R0

r 0
F11

R0

Apt
1O~ t23/2!G . ~3.19!

We again obtain thet21/2 decay at long times—in fact, it
takes over rather quickly, after an initial transient. A new
feature has appeared, however. In one dimension we saw that
the decay continues indefinitely, tending toward zero~all par-
ticles absorbed! at long times. In three dimensions, however,
even with a fully absorptive boundary condition atR0, the
decay tends towards a nonzero constant; only a fraction of
the particles is absorbed, no matter how long the diffusion
process continues. This is a manifestation of the famous
Polya theorem,25 which states that for symmetric random
walks on discrete lattices in one and two dimensions, the
diffusing particle will return infinitely often to the origin. In
three and higher dimensions, however, the probability that
the particle will return to its starting point is strictly less than
one—on a three-dimensional cubic lattice, this probability is
approximately 0.35. Roughly speaking, in these higher di-
mensions the space in which the particle wanders is large
enough so that there is a nonzero chance that the particle can
get ‘‘lost.’’

For continuous-time and -space random walks, as dis-
cussed here, the theorem can be modified to a statement of
whether the particle returns to an arbitrarily small neighbor-
hood of its starting point. Our calculation shows that, in the
problem discussed above, the probability of the particle hit-
ting the absorbing sphere isR0/r 0 . Note that forr 05R0 , i.e.,
the particle starts on the absorbing sphere itself,N(t) is zero
for all time; forR50,N(t)51 for all time. The latter simply
follows from the fact that, although in a continuous-space
random walk there is a nonzero probability for the particle to
come arbitrarily close to the origin, there is zero probability
of it actually hitting any prespecified point.

We will see in later sections that the Polya theorem will
play an important role in understanding the dimension-
dependent behavior of ligand diffusion.

The auxiliary functiong is, finally, obtained using the
Green’s functionH and the initial condition, Eq.~3.15!. Note
that in three dimensions the corresponding equation differs
somewhat from Eq.~3.8!, due to the existence of the three-
dimensional volume elementr 0

2,

g~r ,t !5E
R0

`

dr0r 0
2H~r ,t;r 0!g~r 0,0!. ~3.20!

We skip now the tedious algebra involved in evaluating this
relation, reconstructing the original distributionp via Eq.
~3.4!, going to the limitr 0→R0 to obtain our ligand migra-

tion model and evaluating the fraction of unreacted ligands,
since nothing is involved that is conceptually new. The final
result is

N3d~ t !512
R0

R011 H 12expF SR011

R0
D 2t GerfcSR011

R0
At D J ,
~3.21!

with the asymptotic long-time behavior

lim
t→`

N3d~ t !→12
R0

R011 F12
R0

R011

1

Apt
1O~ t23/2!G .

~3.22!

Again, we recognize the Polya behavior,N3d(`)
51/(R011), this time for a reactive inner shell, not a fully
absorptive one as in Eq.~3.19!. For large inner shells, i.e.,R0
large on the diffusive length scalel r , the escape probability
vanishes asN3d(`)}1/R0 , while for smallR0 the escape
probability goes to unity.

C. Laplace transform results

In general dimensions it is not possible to get exact so-
lutions to the problem of isotropic diffusion with an inner
reactive boundary. Analytical progress in studying the gen-
eral problem can be made, however, by using Laplace trans-
form techniques. In this section we use the methods intro-
duced by Tachiya22 and Sano and Tachiya.34

We again consider a particle isotropically diffusing ind
dimensions and confined to the domainR0<r,`. Its radial
probability densityp(r ,t) satisfies~we use dimensionless
time and space variables as described in the previous section!

]

]t
p~r ,t !5¹2p~r ,t !, ~3.23a!

where ¹25(]2/]r 2)1[(d21)/r #~]/]r!. The inner reactive
boundary is described by the condition

]

]r
p~r ,t !U

r5R0

5p~R0 ,t ! ~3.23b!

and we assume that the particle starts at some radial position
r 0.R0 ,

p~r ,0!5d~r2r 0!/r 0
d21. ~3.23c!

Define the Laplace transformp̃(r ,s) with respect to time
in the usual way,

p̃~r ,s!5E
0

`

dte2stp~r ,t !. ~3.24!

The diffusion Eq.~3.23a! then becomes

¹2p̃2sp̃52d~r2r 0!/r 0
d21. ~3.25!

Sano and Tachiya34 make the following useful observation:
Eq. ~3.25! is a Green’s function equation, and its reciprocity
property can be utilized to arrive at the adjoint equation of
~3.25!,
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¹ r0
2 p̃~r ,s;r 0!2sp̃~r ,s;r 0!52d~r2r 0!/r 0

d21, ~3.26!

where¹ r0
2 is the Laplacian operating on the variabler 0, and

the dependence ofp̃ on r 0 is now explicitly noted. Now
define

N~r 0 ,t !5E
R0

`

drr d21p~r ,t;r 0!. ~3.27!

Integrating Eq.~3.26! over *R0
` drr d21, we get

¹ r0
2 Ñ~r 0 ,s!2sÑ~r 0 ,s!521. ~3.28!

It is also easy to show that Eq.~3.23b! becomes

]

]r 0
Ñ~r 0 ,s!U

r05R0

5Ñ~R0 ,s! ~3.29!

and that

lim
r0→`

Ñ~r 0 ,s!51/s. ~3.30!

We can simplify slightly by writing Ñ(r 0 ,s)
5r 0

12d/2c(r 0 ,s) and plugging into Eq.~3.28!. The resulting
homogeneous equation forc(r 0 ,s) has as its solutions the
modified Bessel functions33 I6(12d/2)(Asr0) and
Kd/221(Asr0). Any two of these form a linearly independent
pair; relations among the three are given in Abramowitz and
Stegun.33 ~They are slightly different if the functions are of
integer order or of half-integer order.! However,I6n(z) di-
verges asz→` regardless of whethern is an integer or half-
integer, andKn(z)→0 asz→`. Our solution to Eqs.~3.28!
and ~3.29! is then

Ñ~r 0 ,s!5Cr0
12d/2Kd/221~Asr0!11/s, ~3.31!

whereC is a constant to be determined. This is easily done
by using the boundary condition~3.29!, so the full ~exact!
solution to Eqs.~3.28!–~3.30! is

Ñ~r 0 ,s!5
1

s H 12S r 0R0
D 12d/2

3F 1

11As
Kd/2~AsR0!
Kd/221~AsR0!

G Kd/221~Asr0!
Kd/221~AsR0! J .

~3.32!

For d51, 2, and 3, this agrees exactly with the results of
Sano and Tachiya~Table I!.34

We are most interested in the case wherer 05R; this
simplifies Eq.~3.32! considerably to

Ñ~R,s!5
1

s H 12
1

11As
Kd/2~AsR0!
Kd/221~AsR0!

J . ~3.33!

By using the fact that the limitt→` corresponds tos→0 for
the Laplace transform, we can use these equations to analyze

the long-time limit and illustrate how the Polya theorem
works in this model. Forn.0, and in the limitz→0,Kn(z);
1
2G(n)(

1
2z)

2n @note thatKn(z)5K2n(z)#.
33 Then in one di-

mension, the right-hand side of Eq.~3.33! tends to 1/As in the
limit s→0, which corresponds to a long-time decay
N(t);t21/2.

Two dimensions is a special case; here we need the lim-
iting form K0(z);2log z for small z. Using this in Eq.
~3.33! yields Ñ(R0 ,s)→~21/s log s! as s→0; the decay is
marginal. For long times,N(t) decays as 1/logt.

In three and higher dimensions Polya’s theorem ensures
that Ñ will grow as 1/s ass→0; that is,N(t) tends towards
a constant ast→`. We find that as s→0, Ñ(R,s)
→(1/s)(d22/d221R0), so that ast→`,

N~R0 ,t !→
d22

R01d22
, d>3. ~3.34!

We can find the inverse transform of Eq.~3.32! and
solve exactly for the general case (r 0>R) in one and three
dimensions. In one dimension we find

N1d~r 0 ,t !512FerfcS r 02R0

2At D 2e~r02R0!et

3erfcS At1
r 02R0

2At D G . ~3.35!

When r 05R0 this reduces to Eq.~3.11!.
In three dimensions

N3d~r 0 ,t !512
R0

r 0

1

11
1

R0

H erfcS r 02R0

2At D
2e~111/R0!~r02R0!e~111/R0!2t

3erfcF S 11
1

R0
DAt1

r 02R0

2At G J . ~3.36!

As t→`, this becomes

N3d~r 0 ,t !512
R0

r 0

1

11
1

R0

F 12
1

Ap

e~111/R0!~r02R0!

11
1

R0

t21/2G
~3.37!

so the Polya limit isN(r 0 ,`)512(R0/r 0)[1/11(1/R0)].
For r 05R0 we recover Eq.~3.22!.

An important consequence of Eq.~3.32! is that the decay
of N(r 0 ,t) leading to the Polya regime will be dimension-
dependent in general. By keeping higher-order terms in the
small-s expansion of the modified Bessel functions, Eq.
~3.32! can be used to study this behavior in detail. This can
get rather messy, however, so we report on only one impor-
tant aspect of the general dynamics. Forr 0@R0 , N(r 0 ,t)
remains close to one until about the time it takes for the
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particle to diffuse to the reactive boundary, which is of order
(r 02R0)

2. Long after that time, the fraction of particles re-
maining decays ast2(d22)/2 ~for d>3! towards the Polya
limit.

The decay behavior is very different forr 0'R0 , how-
ever. There the decay sets in quickly, of course, and after an
initial transient decays ast21/2. This is because the geometry
looks quasi-one-dimensional for the particle close to the re-
active boundary. While there may be some dimension-
dependent behavior near the onset of the Polya regime, this
in general will not be noticeable forr 0 close to or equal to
R0—the Polya regime sets in before the dimension-
dependent regime becomes appreciable. In these cases, the
behavior looks remarkably dimension-independent; aside
from the initial transient, one sees at21/2 decay towards a
nonzero constant. Because measurements of ligand diffusion
correspond to the initial conditionr 05R0, this has important
consequences for measurements of ligand recombination, as
discussed in Ref. 13. This point will be dealt with further in
Secs. IV and V.

IV. NUMERICAL TREATMENT AND RESULTS

We will present in the following a detailed numerical
treatment of the problem defined by Eqs.~2.7!–~2.10!. First,
we will describe the numerical procedure involved, and dis-
cuss its effective implementation. In Sec. IV B we will
present extensive numerical results that show the existence
of an intermediate algebraic decay ofN(t), with t21/2, to-
gether with the existence of a plateau-regime ind.1. In Sec.
IV C, we will present a mathematical argument for the exist-
ence of the algebraic regime, and, finally, in Sec. IV A we
will analyze the relationship between the plateau regime and
the properties of the lowest eigenvalues.

A. Numerical solution

Equation~2.8! with initial condition ~2.7! can be solved
via a spectral expansion

p~r ,t !5(
n

exp~2kn
2t !cn~r !cn~R0!, ~4.1!

where thecn(r ) are the eigenfunctions of the right-hand side
differential operator in Eq.~2.8!, with eigenvalues2kn

2. Us-
ing standard Sturm–Liouville theory35 it can be shown that
these eigenfunctions obey the orthogonality relation

E
R0

R1
drr d21cn~r !cm~r !5dn,mN

2, ~4.2!

with N being a normalization constant. For generald the
eigenfunctions can be expressed in terms of Bessel functions,

cn~r !5r 12d/2@anJ12d/2~knr !1bnY12d/2~knr !#, ~4.3!

whereJ andY are the~linearly independent! Bessel func-
tions of the first and second kind, respectively.33 In odd di-
mensions, i.e., for half-integer indices, these Bessel functions
are related to their spherical counterparts, and can be repre-

sented using polynomials in 1/r and trigonometric functions.
In one dimension they are simply given by the sine and
cosine functions.

The eigenvalueskn , together with the amplitudesan and
bn , can now be determined from the boundary conditions
~2.9! and~2.10!. In order to apply these boundary conditions,
we use the standard formula36

d

dy
@ynZn~y!#5ynZn21~y!, ~4.4!

whereZ represents either Bessel functionJ or Y.33 Then the
inner reactive boundary condition Eq.~2.9! becomes

kn@anJ2d/2~knR0!1bnY2d/2~knR0!#

5anJ12d/2~knR0!1bnY12d/2~knR0!. ~4.5!

Similarly, the outer reflecting boundary condition, Eq.
~2.10a!, becomes

anJ2d/2~knR1!1bnY2d/2~knR1!50. ~4.6!

It is useful at this stage to transform to new parameters,
the width of the shell

DR5R12R0 , ~4.7a!

and the ratio of this shell width to the inner radius

X5
DR

R0
, ~4.7b!

and to introduce the scaled eigenvalue

Kn5knDR. ~4.8!

Eliminating the amplitudesan andbn using the two Eqs.
~4.5! and ~4.6!, and employing the parameters introduced
above, we derive the eigenvalue equation forKn in arbitrary
dimension,

05J12d/2SKn

1

XDY2d/2FKn

X

~11X!G
2J2d/2FKn

X

~11X!GY12d/2SKn

1

XD
2

Kn

DR H J2d/2SKn

1

XDY2d/2FKn

X

~11X!G
2J2d/2FKn

X

~11X!GY2d/2SKn

1

XD J . ~4.9!

In one dimension, for example, this equation simplifies to

cos~Kn!2
Kn

DR
sin~Kn!50. ~4.10!

The motivation for the parameter transformation~4.7!–
~4.8! is easily seen now. In one dimension the eigenvalue
equation assumes a very simple form. Furthermore, we will
be concerned below very often with the regime of largeDR.
In this regime, the low-lying eigenvalues, i.e.,Kn!DR,
which determine the long-time behavior, can be determined
with sufficient accuracy by neglecting the second term in the
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equations. On the other hand, the eigenvalues that determine
the short-time behavior, i.e.,Kn@DR, can be obtained by
neglecting the first term in the inverse equations, i.e.,

05
DR

Kn
H J12d/2SKn

1

XDY2d/2FKn

X

~11X!G
2J2d/2FKn

X

~11X!GY12d/2SKn

1

XD J
2H J2d/2SKn

1

XDY2d/2FKn

X

~11X!G
2J2d/2FKn

X

~11X!GY2d/2SKn

1

XD J ~4.98!

and

DR

Kn
cos~Kn!2sin~Kn!50. ~4.108!

In both limits, Kn@DR and Kn!DR, the eigenvalue
equations for theKn become independent ofDR, and conse-
quently, this holds also for the correspondingKn . This prop-
erty gives us already some insight into the scaling behavior
of the time constants 1/kn

2; see Eq.~4.1!. For large values of
DR those time constants will scale withDR2, which is par-
ticularly important for the longest time scales.

The zeros of the left-hand side function in Eq.~4.9! are
the eigenvalues of the spectral expansion. Figure 2 shows the
typical behavior of that function which exhibits the qualita-
tive characteristics known from Bessel functions. There is
the practical problem of finding these zeros in an effective
way. For the case of the lowest eigenvalue one can utilize the
results of the generalized moment treatment of Sec. V below,
namely that the inverse of the time constanttl , which is
given in analytical form, provides an exact upper limit for
the lowest eigenvaluek1

2. This upper limit can be used in any
numerical scheme37 as the interval (0,A1/t l # in which to
perform the numerical search for that eigenvalue.

For the higher-lying eigenvalues there arises the problem
of specifying intervals in which to look for the eigenvalues,
without overlooking one. This is particularly a major prob-
lem for the determination of the second eigenvalue,K2. As
can be seen already in Fig. 2, and will be discussed in more
detail below in Sec. IV D, there emerges a considerable gap
which increases with dimension.

For still higher eigenvalues, however, one can use the
following arguments. Let us consider the regime
Kn@max[X,(11X/X)]. Using the properties of Bessel func-
tions for large values of the argument,36

J6n~z!5A 2

pz
cosS z7

p

2
n2

p

4 D1O~1/z!, ~4.11a!

and

Y6n~z!5A 2

pz
sinS z7

p

2
n2

p

4 D1O~1/z!. ~4.11b!

Equation~4.9! can be simplified to the one-dimensional Eqs.
~4.10! and ~4.108!. This tells us immediately that for large
values ofDR, at intermediate times the eigenvalues are given
approximately by

Kn'S n1
1

2Dp for Kn!DR, ~4.12!

wheren is an integer, while at largerKn ~shorter times! the
eigenvalues shift to

Kn'np for Kn@DR. ~4.13!

In both regimes, the eigenvalues have a spacing of
(Kn112Kn)'p, with a transition regime, where, because of
smoothness, the spacing is somewhat shorter or larger, but
never smaller thanp/2 or larger than 3p/2.

We have, therefore, defined the interval in which to look
for the eigenvalueKn11 iteratively by (Kn1p/2, Kn

13p/2!. In this way it is impossible to overlook a single
eigenvalue. We have found that for the determination ofK3
this method is already sufficient. Due to the gap betweenK1
andK2, only for the determination of the second eigenvalue
the intervals (K11p/2,K113p/2), (K113p/2,K115p/2),
etc. have to be scanned successively, untilK2 is found.

The amplitudesan and bn are finally gotten from Eq.
~4.6!,

an52
1

N
Yd/2~knR1!, ~4.14a!

bn5
1

N
Jd/2~knR1!, ~4.14b!

where we have used, for simpler notation, the shell radiiR0
andR1, together withkn again. The normalization termN in
Eqs.~4.14! is gotten from the normalization condition for the
eigenfunctions, Eq.~4.3!. Using the abbreviations~m,n
50,1!,

Jmn5Jd/22m~knRm!, ~4.15a!

Ymn5Yd/22m~knRm!, ~4.15b!

FIG. 2. Function defined by the left-hand side of Eq.~4.9! for d510,
DR5103, andX510; the zeros of this function are the eigenvalueskn en-
tering the eigenfunction expansion~4.1!.
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this normalization term can be cast into the form

N5
1

2
R1
2~Y01J112J01Y11!1

1

2
R0
2@~Y01J102J01Y10!

2

2~Y01J002J01Y00!~Y01J102J01Y10!#. ~4.16!

The numerical method we have chosen here is different
from other viable numerical approaches like space-
discretization, followed by either generalized moment
expansion38 or an eigenvalue analysis,9,10 or from short-time
approaches like Chebyshev propagation.39 We see some ad-
vantage in working with the eigenfunction expansion of the
original reaction–diffusion operator in its infinite-
dimensional Hilbert space of functions. For example, it is not
necessary to check whether a discretization employed is fine
enough to catch all phenomena correctly. Instead, the above
algorithm gives successivelyall numerically exact eigenval-
ues of the operator, starting from the lowest one, i.e., from
the longest time scale. Therefore, the dynamics is obtained
correctly down to the time scale corresponding to the highest
eigenvalue included. For the cases of interest, this number
can be quite large, i.e., several thousand.

B. Results

Figure 3 shows results for the one-dimensional case with
finite boundary. After an initial transient, which ends at about
t'1, one can see clearly the algebraic decay witht21/2,
which is predicted by Eqs.~3.11! and ~3.12! for the case of
an infinite boundary. Both regimes are described correctly by
Eq. ~3.11!. With a finite boundary, the algebraic decay ends
at some finite time and changes into a single-exponential
cutoff. The time scale of this cutoff grows quadratically with
DR, and can be described by the generalized moment ap-
proximation; see Sec. V below.

In Fig. 4 results are shown for a typical situation in three
dimensions for fixed large values ofX andDR. It still shows
the initial transient, followed by an intermediate algebraic
decay. Both can be described by the one-dimensional result,

Eq. ~3.11!. However, here a new feature emerges. At some
time t* , the algebraic decay levels off to a behavior that
looks like a plateau in the double-logarithmic plots we use to
present our data, i.e., the data appear to stabilize at a value
N(t)'Nplateau. This plateau is essentially the single-
exponential long-time decay. Since there emerges a large gap
between the lowest and the second-lowest eigenvalue—see
the discussion in Sec. IV D below—this gap represents itself
as a plateau in that representation of the data.

Figures 5~a! and 5~b! show how the relationship between
algebraic decay and plateau regime depends on the param-
etersDR and X. As Fig. 5~a! clearly demonstrates, large
values of the parameterX are responsible for the plateau
regime. Increasing values ofX lead to an increasing length of
the plateau regime, concomitant with an increasing value of
N(t) at the plateau. Conversely,DR controls mainly the po-
sition in time of the plateau regime. Figure 5~b! demonstrates
that the form of the plateau regime is more or less invariant
against variations of the value ofDR, as long as the plateau
regime is still recognizable. An increase ofDR mainly re-
sults in a shift of the plateau regime to longer times.

Figure 6 finally shows the dependence of the plateau
regime on the space dimension. Starting withd52 a devia-
tion from the one-dimensional algebraict21/2 decay occurs,
which appears as a stabilization of the value ofN(t) during
some time interval, the plateau. This effect becomes more
pronounced as the space dimension increases. The time for
the onset of the plateau decreases, while the cutoff time in-
creases withd, resulting in an increasing length of the pla-
teau at increasing values ofNplateau. The latter result is in
accord with the different forms of the Polya escape results,
which predict an increase of the escape probability withd. It
will be shown in Sec. V below that, indeed, the plateau value
converges to the Polya value forDR→`.

The case ofd52 requires some more discussion. As can
be seen in Fig. 7 and in Fig. 8, there is a clear deviation from
the one-dimensional behavior. However, whether this new

FIG. 3. N(t) vs t for d51; DR as indicated; the dashed line is the behavior
predicted by Eq.~3.11!.

FIG. 4. N(t) vs t for d53, DR51000, andX510; the dashed line is the
behavior predicted by Eq.~3.11!; the dotted line is the single-exponential
long-time fit, Eq.~5.10!.
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behavior may be called a plateau—as it clearly can ind.2—
or not may be seen as a question of convention.40 Strictly
speaking, there is no plateau in the limitDR→` since the
plateau valueNplateauvanishes in that limit; see also Sec. V
below. However, for finite values ofDR, the amplitude of the
exponential cutoff is nonzero, concomitant with an increas-
ing gap between the lowest and the second lowest eigen-

value, see Sec. IV D below. We interpret the developing
structure inN(t) in d52 as a plateau, although it can be
consideredmarginal since it vanishes in the limitDR→`.

C. Dimension-independence of decay at short and
intermediate times

Our numerical results, reported in Ref. 13 and the previ-
ous sections of this paper, have indicated that the behavior of
both the transient short-time and the intermediate-time alge-
braic decay regimes are both independent of dimension. In
Sec. III C it was further claimed that placing the initial po-
sition of the diffusing particle on the inner reacting boundary
was sufficient to produce the dimension-independentt21/2

decay at intermediate times. In this section we demonstrate
this assertion analytically by direct examination of the eigen-
value equations in the short- and intermediate-time domains.
We consider the cases of both a reflecting and an absorbing
outer boundary. For both cases we derive thet21/2 decay at
intermediate times; this corresponds to our assertion that it is
the proximity of the particle’s initial position to the inner
boundary that drives this decay, and the outer boundary plays
no role in this portion of the falloff.

The arguments in this section are purely mathematical;
alternative derivations and accompanying physical explana-
tions for the observed dimension-independence are given in
Secs. III C and V.

FIG. 5. N(t) vs t for d53, ~a! DR51000 andX as indicated,~b! X510 and
DR as indicated; the dashed line is the behavior predicted by Eq.~3.11!.

FIG. 6. N(t) vs t for DR51000 andX510, andd as indicated; the dashed
line is the behavior predicted by Eq.~3.11!.

FIG. 7. N(t) vs t for d52, DR51000, andX as indicated.

FIG. 8. K2 vs d for X510, 102, 103, 104.
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We study first the generald-dimensional reaction-
diffusion model with reflecting outer boundary@Eqs. ~2.8!–
~2.10a!#. The solution of the diffusion equation ind dimen-
sions, written as an eigenfunction expansion, and subject to
initial condition Eq.~2.7!, is given by Eqs.~4.1! and ~4.3!,

p~r ,t !5(
n

exp~2kn
2t !r 12d/2@anJ12d/2~knr !

1bnY12d/2~knr !#R0
12d/2@anJ12d/2~knR0!

1bnY12d/2~knR0!#, ~4.18!

where as usual we use dimensionless space and time vari-
ables. We also replacer 0 in Eq. ~2.7! with R0 because we use
here the initial condition that the particle starts at the inner
reactive boundary.

We now consider an outer reflecting boundary atR1 in
addition to the inner reactive boundary atR0. The inner
boundary condition is described by Eq.~2.9! and the outer by
Eq. ~2.10a!. The resulting eigenvalue equation is given by
Eq. ~4.9!.

We now introduce our main approximation, namely that
knR0@1. Physically, this amounts to looking at times short
compared to those needed for ligands to diffuse very far into
the region between the two boundaries, which corresponds to
the short and intermediate times that we are interested in.
Specifically, the algebraic decay regime comes about from
interaction with the inner boundary, as already stated; the
outer boundary is responsible for the position of the plateau,
related to the previously discussed Polya limit, and the sub-
sequent exponential decay ofN(t). BecauseR1.R0 , our
condition automatically implies thatknR1@1. Furthermore,
because we have already seen that the situation of biological
and physical interest is whereDR5(R12R0)/ l r is large
compared to one, we confine ourselves to the further condi-
tion that knDR@1. These are our only approximations,
which result in the simplified eigenvalue Eq.~4.108!.

The error in Eq.~4.108! is of order 1/knR0 . As discussed
in Sec. IV A, numerical analysis indicates that in all cases
Eq. ~4.108! becomes an accurate expression for the eigenval-
ues after the first three or four.

Using this and results foran andbn from Sec. IV A, we
find

R0
d21p~R0 ,t !5~2/DR! (

n50

`

e2kn
2t cos2~knDR!. ~4.19!

In Eq. ~4.19! we let the sum run fromn50, even though the
approximations involved break down for the first few eigen-
values. However, as long as we restrict ourselves to times
short compared tot r r 0/ l r , the error involved will be expo-
nentially small.

The left-hand side of Eq. ~4.19! is equal to
2(d/dt)N(t), as discussed in Sec. II. Because Eq.~4.108!
and therefore Eq.~4.19! are independent of dimension, we
have already shown that for times short compared tot r r 0/ l r ,
the time decay ofN(t) is independent of dimension. We can
go further, however, and derive thet21/2 decay at intermedi-
ate times.

We already have the restriction thatknDR@1. Because
we are also restricted to the biologically relevant case where
DR@1, kn itself can be small or large compared to one.
Smallerkn’s correspond to longer times, and in particularkn
small compared to one~but large compared to 1/DR! corre-
sponds to the intermediate time regime, where we expect to
see the algebraic decay. We can then use Eq.~4.12! for kn
small compared to unity, and for largerkn ~shorter times! we
use Eq.~4.13!.

Equation~4.19! can then be rewritten, using Eq.~4.108!,
as

2
d

dt
N~ t !5~2/DR! (

n50

`

e2kn
2tkn

2 sin2~knDR!. ~4.20!

At intermediate times, when Eq.~4.12! holds,
sin2(knDR)'1. Substituting Eq.~4.12! into Eq. ~4.20!, we
find that the sum on the right-hand side now depends onn as
Sn2en

2t ~with then’s now half-integers!. Because the terms
in the summand are closely spaced, we can convert the sum
to an integral, and immediately scale out thet-dependence to
find

2
d

dt
N~ t !;t23/2 ~4.21!

which gives thet21/2 decay.
The previous discussion used a reflecting boundary at

R1. Even thoughR1 must therefore enter the eigenvalue
equations, we expect physically that the precise nature of the
outer boundary condition cannot affect the physics at short
and intermediate times. That this is the case can be seen by
repeating the previous discussion with only one change; we
replace the reflecting boundary atR1 with an absorbing one.
These two outer boundary conditions represent diametrically
opposite situations. The new outer boundary condition is
then

p~R1 ,t !50. ~4.22!

The eigenvalue equation Eq.~4.9! is replaced by

kn

5
J12d/2~knR1!Y12d/2~knR0!2J12d/2~knR0!Y12d/2~knR1!

J12d/2~knR1!Y2d/2~knR0!2J2d/2~knR0!Y12d/2~knR1!
.

~4.23!

Using the same approximations as before gives

tan~knDR!52kn . ~4.24!

The arguments used for the reflecting outer boundary can
now be repeated; we now find that

R0
d21p~R0 ,t !5~2/DR! (

n50

`

e2kn
2t sin2~knDR!. ~4.25!

Using the new eigenvalue equation Eq.~4.24!, we find

R0
d21p~R0 ,t !5~2/DR! (

n50

`

kn
2e2kn

2t cos2~knDR!. ~4.26!
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Note that the new eigenvalues, relative to those for the re-
flecting outer boundary, are simply shifted byp/2; also that
the differencekn112kn between adjacent eigenvalues is un-
changed. Equation~4.26! then becomes identical@up to
O(1/knDR)# to Eq. ~4.19!. This is not the end of the story,
however, because2(d/dt)N(t) is no longer equal to the
left-hand side of Eq.~4.26!. This is because the outer absorb-
ing boundary condition implies no incoming flux of particles
at the outer boundary. Because we are restricting ourselves to
times much shorter than those required for particles to dif-
fuse to the outer boundary, however, this term makes a neg-
ligible contribution toN(t) @in fact, its contribution is of
O(1/knR1)# and our earlier conclusions remain unchanged.

We have shown, for short and intermediate times, that
when the initial position of the diffusing particle is on the
inner reactive boundary, the short- and intermediate-time be-
havior of N(t) is independent of dimension, and we have
derived the universalt21/2 algebraic decay at intermediate
times. Our analysis also supports conclusions generated by
our numerical studies, in particular that the conditionDR@1
is necessary for the algebraic decay to be observed at all~if
the outer boundary is too close to the inner boundary, expo-
nential decay sets in almost immediately!.

A second conclusion can be drawn. In order to derive the
t21/2 algebraic decay, we needed that a subset of the relevant
kn’s be small compared to unity. Our starting condition was
that knR0@1. If R0 itself is not too small, this is perfectly
consistent withkn,1. However, for values ofR0 ~in units of
l r! which are too small, the two conditions are incompatible,
and not21/2 decay arises from our calculations. But this con-
clusion is consistent with our other condition~see Sec. V!
that the value ofX not be too large.13 Our analytical results,
therefore, not only support our numerical conclusions but
also shed some light on their physical origins.

D. Eigenvalues and the plateau

Finally, we want to investigate what a closer look at the
eigenfunction expansion can tell us about the plateau regime
that we observed in our numerical results.

The existence of a plateau regime in a double logarith-
mic plot, like the one in Figs. 3–7, is an indication that there
is a considerable gap in the values of the time constants of
the eigenfunction expansion. In other words, if the eigenval-
ues are ordered,k1,k2,k3 ..., then there is ann, so that
kn!kn11 holds. Since the final decay ofN(t) is single-
exponential, which is particularly well illustrated by the
single-exponential long-time approximation in Fig. 4, see
also Sec. V below, this gap should appear betweenk1 andk2.

In order to investigate this in more detail, we will ana-
lyze the behavior of the system size-scaled eigenvaluesKn ,
Eq. ~4.8!, for n51,2 onX in the limit DR→`. It is reason-
able to employ this limit, since, as the results presented
above show, a plateau regime appears only for large system
size, and, as Fig. 5~b! demonstrates, the length of the plateau
in a logarithmic plot is practically independent ofDR. An
additional advantage is that the eigenvalue equation~4.9!
simplifies to

J12d/2SKn

1

XDY2d/2FKn

X

~11X!G
2J2d/2FKn

X

~11X!GY12d/2SKn

1

XD50. ~4.27!

The ratioK2/K1 is a direct measure of the length of the
plateau in a double-logarithmic representation. Figure 8
demonstrates thatK2 becomes practically independent ofX
for large values ofX, and increases almost linearly withd.
K1, on the other hand, depends strongly on bothX and d,
decreasing with both. Because of the weak dependence ofK2
onX, we refrain from presenting the data forK1 directly, but,
rather, show how the ratioK2/K1 depends onX and d in
Figs. 9 and 10. Figure 9 demonstrates that the ratioK2/K1
grows withX according to a power law,

K2 /K1}X
~d22!/2. ~4.28!

Interestingly,~d22!/2 is the same exponent with whichN(t)
decays to its Polya limit in the semi-infinite system, see Sec.
III C. In 2d the ratio depends only logarithmically onX,

K2 /K1}Aln X, ~4.29!

as Fig. 10 shows.
Since the ratioK2/K1 grows without bounds withX for

all dimensionsd.1, it is clear that a plateau will emerge for

FIG. 9. K2/K1 vs X for d.2, as indicated; note that the lines have a slope
of ~d22!/2.

FIG. 10. K2/K1 vs X for d52; the dashed fit is 4.1Alog(0.411X).
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sufficiently large values ofX. It remains to be determined
what such a sufficiently large value ofX is, depending on
dimension. For that purpose let us consider a simple test
function, a sum of two exponentials,

M ~ t !5
1

2
~e2t1e2t/t!, ~4.30!

wheret is a measure of the ratio of the two time constants.
Figure 11 shows the behavior ofM (t) in a double logarith-
mic plot for various values oft. In 1d the ratio of eigenval-
ues in the limitDR→` is K2/K153. Since (K2/K1)

25t1/t2,
this value corresponds approximately to the curve fort510
in Fig. 11, clearly no plateau. However, it can be seen that a
plateau already begins to emerge in the ranget'30–100.
Therefore, a value of (K2/K1)

2'6–10 can be considered a
lower threshold for the ratio of the lowest eigenvalues in
order to produce a recognizable plateau regime. From Fig. 9
it can be seen thatX'10 is sufficient in 3d, and for larger
dimensions the threshold values forX are still lower. In 2d,
however, due to the logarithmic dependence ofK2/K1 onX,
the lowest values ofX necessary to produce a recognizable
plateau are in the rangeX'100–1000.

V. GENERALIZED MOMENT ANALYSIS

The method of generalized moment expansion26,27,28,41,38

allows an analytical analysis of the approximate long-time
behavior ofN(t) for finite DR. In particular, it provides a
possibility to obtain approximate analytical expressions for
the time constant of the exponential cutoff—corresponding
to the lowest eigenvalue—and for the value ofN(t) in the
plateau regime. In the following we give a short review of
the basic ideas.

The long time~or low frequency! moments ofN(t) are
defined by

m2n5~n21!! E
0

`

tn21N~ t !dt. ~5.1!

They can be written formally as matrix elements of the in-
verse of the adjoint stochastic operator¹ r0

2 introduced in

Sec. III C,28

m2n5@2¹ r0
2 #2n15^d~r2r 0!@2¹ r

2#2n1&, ~5.2!

where1 denotes the constant function of value 1,^& denotes
the integral overr fromR0 toR1 and has the properties of an
inner product on the space of functions, and the delta func-
tion comes from the initial condition, Eq.~2.2!. ¹ r

2 can be
cast into the somewhat more convenient form

¹ r
25

1

r d21

d

dr
r d21

d

dr
, ~5.3!

supplied with the adjoint boundary conditions,26

d

dr
f ~r !U

r5R0

5 f ~R0!, ~5.4a!

d

dr
f ~r !U

r5R1

50, ~5.4b!

that any functionf (r ) on which¹ r
2 operates has to obey.

It is useful to define the auxiliary functions

m2n~r !5@2¹ r
2#2n1 ~5.5!

from which we can obtain the desired moments by evaluat-
ing them atr5R0 . For n51,2,..., these functions can be
determined iteratively via the set of equations

¹ r
2m2n~r !52m2~n21!~r ! ~5.6!

using

m0~r !51 ~5.7!

as the starting function. The general solution of Eq.~5.6!
under the boundary conditions~5.4! is

m2n~r !5R0
~12d!E

R0

R1
r 1
d21m2~n21!~r 1!dr1

1E
r

R1
r 1
12dE

R0

r1
r 2
d21m2~n21!~r 2!dr2dr1 .

~5.8!

The evaluation of the integrals in Eq.~5.8! is tedious but
straightforward. We give here the results form21 andm22,

m215DR~Yd21!/Xd ~5.9a!

m225$DR2X~Yd21!2~d224!1DR3@22d1Yd~d224!

2Y21dd21Y2d~d12!#%/$X3d2~d224!%, ~5.9b!

where the abbreviationY5(11X) was used.
Based on the generalized moments of a relaxational dy-

namical observableN(t), one can define single-, multi-, and
nonexponential approximations that reproduce a specified
number of those moments.28,42 Of particular interest in our
case is a single-exponential approximation that reproduces
the momentsm21 andm22 of the exact functionN(t). It is
easy to see that such an approximation has the form

Nlong~ t !5ql exp~2t/t l !, ~5.10!

with the time constanttl given by

FIG. 11. Test functionM (t), Eq. ~4.30!, vs t, t as indicated.
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t l5m22 /m21 , ~5.11!

and the amplitudeql given by

ql5m21
2 /m22 . ~5.12!

The time constanttl is an approximation to the time
constant of the exponential cutoff, i.e., the inverse of the
lowest eigenvalue. It can be shown that the ratio of succes-
sive moments m2n/m2(n11) converges to the lowest
eigenvalue.43 The inverse of the first possible ratio is the
well-known mean first passage time44–46

tMFPT5m21 /m05m21 , ~5.13!

and is used quite often as an approximation to the inverse of
the lowest eigenvalue.45 But whenN(t) exhibits nonexpo-
nential behavior—as in our case—the mean first passage
time is not a good estimate of the exponential cutoff. How-
ever, it turns out that the second ratio, which determinestl ,
already provides an acceptable approximation in most cases,
see Fig. 4.

The quantityql is an approximation to the contribution
of the exponential cutoff to the overall decay ofN(t) and, as
such, it provides an estimate of the plateau value at which
N(t) stabilizes, before it finally decays exponentially.ql also
provides a bridge to the semi-infinite system results derived
in Sec. III. In the limit R1→` the approximation~5.10!
should still exhibit some aspects of the behavior ofN(t).
Indeed, in that limittl→`, andql becomes the escape prob-
ability of Polya’s theorem

lim
R1→`

ql5H 0 d<2
d22

R01d22
d>3

; ~5.14!

compare Eq.~3.34!. For d51, the amplitudeql vanishes as
ql}DR21, whereas ford52 it vanishes only logarithmically,

ql}
1

R0 ln~R1!
. ~5.15!

This is another indication of the marginal behavior in 2d. It
is quite surprising that a simple single-exponential approxi-
mation like Eq.~5.10! is already able to reproduce such a
complicated limiting behavior.

These results on the exponential long-time cutoff now
allow us to analyze the algebraic and the plateau regime from
a point of view different from the eigenfunction expansion
approach employed in Secs. IV C and IV D.

One necessary condition for the algebraic regime~and,
possibly, the plateau! to be present at all is that the cutoff
time scaletl is much larger than the time for the initial
transient, which is ofO~1!. For fixed values ofX andDR
large t l}DR2 holds in all dimensions. For fixed values of
DR andX larget l}X

d21 holds ind.1. Asymptotically for
DR→`, however, t l /DR

2}Xd22 holds in d.2, while
tl /DR

2}ln(X) holds in 2d. Therefore, the conditiontl@1
can always be met by sufficiently large values ofX andDR.
Note that, as will be discussed in more detail below,tl /DR

2

exhibits the same asymptotic properties as (K2/K1)
2, intro-

duced in Sec. IV D above.

A crossover timet* from the algebraict21/2-decay to the
plateau regime can be estimated through the relation

N1d~t* !'ql , ~5.16!

giving rise to

t*'
1

pql
2 . ~5.17!

The other condition for the existence of the algebraic regime
is that this crossover timet* is also much larger than the
initial transient time.

Sincet* is proportional to the square of the inverse of
ql , we can use our knowledge of the asymptotic behavior of
ql , see Eq.~5.14!, for an analysis of the behavior oft* . For
d.2 we find from the Polya limit thatt* assumes the lim-
iting value, t*→[(R01d22)2/p(d22)2] for R1→`.
Therefore, in order thatt*@1 also large values ofR0 are
necessary in this limit. A large Polya valueN~`! simply re-
duces the length of the algebraic regime. In 2d ql vanishes
for R1→`, although logarithmically, thereby guaranteeing
that t*→`, too, fulfilling the necessary condition for an al-
gebraic regime to be present in this limit forall values ofR0.
In 1d the quantityt* does not make any sense since we
know that only tl controls the algebraic regime here. We
note, however, that also heret*@1 for DR@1 holds.

Since we know from Sec. IV thatDR andX regulate the
algebraic and the plateau regime antagonistically, it is inter-
esting to also analyze the dependence oft* on these quanti-
ties. Surprisingly, we find no qualitative difference between
d.2 and d52 here. For fixed values ofX and DR large
t*}DR2, i.e., t* exhibits the same behaviortl . Therefore,
large values ofDR increase the length of the algebraic re-
gime, as Fig. 5~b! demonstrated. However, for fixed values
of DR and X large we findt*→p21. In other words,t*
decreases with increasingX, thereby shortening the range of
the algebraic regime, letting it vanish altogether forX→`.

These different results forR1→` on the one hand, and
for DR→` with X fixed andX→` with DR fixed, on the
other hand, may appear surprising. However, one has to note
the limits are not interchangeable.R1→` corresponds to a
combined limitDR→` together with X→`. Note that the
parameterX, which describes the ratio of the thickness of the
d-dimensional shell to its inner radius of curvature, controls
the effective dimensionality of the diffusion shell.X→0 is
the limit of an extremely thin diffusion shell and corre-
sponds, therefore, to an effectively 1d situation.X→`, on
the other hand, corresponds to ad-dimensional sphere of
radiusR1→` with an absorptivepoint in the center, i.e.,
R0→0. Equation~5.15! shows that in this combined limitql
can remain finite also in 2d.

In terms of the above defined quantities, a necessary
condition for the plateau regime to be clearly visible is
tl@t* , else the algebraic regime will cross over directly to
the exponential tail. Therefore, the ratio

t l
t*

5
m21
3

m22
~5.18!
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controls the existence of the plateau regime. This function
grows monotonically withDR, X, andd, and its asymptotic
properties follow directly from the asymptotic properties of
tl and t* discussed above. It is instructive to look atd51
first. Here we findtl /t*→3p in the limitDR→`. Since there
is no plateau in 1d, this value gives a lower limit fortl /t* in
order for a plateau to exist. The difference between one and
higher dimensions is that ford.1 the ratiotl /t* becomes
infinite for X→`, even for finiteDR, whereas in one dimen-
siontl /t* always remains small. We conclude, therefore, that
a plateau regime will be seen in dimensions two and higher,
provided that the values ofX andDR are large enough. This
conclusion is also supported by the numerical results pre-
sented in Sec. IV.

One has to note that the behavior of the ratiotl /t* is
different from the ratio of the lowest eigenvalues,K2/K1 ,
analyzed in Sec. IV D. SinceK2 is practically constant for
largeX and 1/tl is an estimate forK1

2, the behavior ofK2/K1

is similar to that ofAt l , presented above;K2/K1}X
(d22)/2

for d.2 andK2 /K1 } Aln(X) in 2d. This behavior was also
obtained in the numerical results of Sec. IV D. Equation
~5.18!, on the other hand, exhibitst l /t*}Xd for d.2 and
tl /t*}X2/ln(X) for 2d. The reason for this discrepancy is
that t* is actually an estimate for the center of the transition
area between the algebraic regime and the plateau regime,
while K2/K1 is an estimate for the range of the plateau re-
gime only. The different behavior of both ratios demonstrate
that, together with the plateau regime, also the range of the
transition regime grows withX.

VI. GENERIC DESCRIPTION OF MACROSCOPIC
PROTEIN FLUCTUATIONS

At physiological temperatures, proteins fluctuate
strongly between different microscopic conformations.47,48,49

On a macroscopic level, these microscopic fluctuations
manifest themselves as fluctuations between protein states of
different functionality. One simple, well-known example is a
protein acting as a passive ion channel which can be either in
an open or a closed state.50,51Other examples are fluctuations
of transport proteins between states of different binding ac-
tivity for the ligand,23,6 or fluctuations of catalytic proteins
between states of different catalytic effectivity. We will ad-
vocate here a new generic—albeit abstract—view for the de-
scription of these macroscopic manifestations of microscopic
conformational fluctuations.

Proteins are an example of complex systems with a high-
dimensional state space.52 This space of microscopic confor-
mations can be partitioned into sets corresponding to the
different macroscopic protein states. Usually, several micro-
scopic conformations that are close to each other in state
space will belong to the same macroscopic state and will
form a—more or less extended—individual patch. All
patches that belong to one particular macroscopic state then
make up one partition set; see Fig. 12. There are several
relevant topologies for the respective structures of the parti-
tion regions in that high-dimensional state space; one or sev-
eral of them may percolate throughout the entire state space,

but not the others, or even all of them may percolate. Note
that, due to the high dimensionality of the state space, inde-
pendent percolation of different partitions is possible.53

However, having neither percolate requires special geom-
etries and is unlikely to be encountered.54

Thermal fluctuations can—in general—be modeled suc-
cessfully as a random walk in some state space.44–46Confor-
mational fluctuations of proteins, particularly at physiologi-
cal temperatures, are no exception to that. Fluctuations of the
macroscopic state of a protein arise in this picture from the
random walk leaving a patch corresponding to one mac-
rostate, and entering the patch of another macrostate. During
the time the random walk stays in that patch the protein stays
in that macrostate, until it leaves the patch again, either to
enter the one it came from or to enter another, see also Fig.
12. We will call this approach therandom walk on state
space partitionspicture of macroscopic fluctuations.

Due to the complicated interactions involved in a
strongly heterogeneous system like a protein, the random
walk in protein state space has to be viewed as one on a very
rugged potential surface.55,56Particularly in the low tempera-
ture regime, this ruggedness imposes strong limitations on
the parts of state space that are accessible at all, a feature
known as ‘‘broken ergodicity.’’57,58Although there has been
considerable work on stochastic processes on rugged poten-
tials, the properties of macroscopic fluctuations due to rug-
ged potential random walks on partitions is completely un-
known up to now. Nevertheless, they could probably give
very interesting new insights into the low-temperature be-
havior of glasses and of proteins.

Here, however, we will be concerned with the high tem-
perature regime. In this regime, random walks on rugged
potentials can be viewed on macroscopic length scales as
free diffusion with some suitably renormalized diffusion
coefficient.59,60It is also known that, e.g., Mo¨ssbauer data on
protein fluctuations can be described successfully using an
effective temperature-dependent diffusion coefficient in a
smooth, slowly-varying potential.61,38We will, therefore, as-
sume in the following that the random walk in the protein
conformational state space can be described in a first ap-
proximation as free diffusion.

FIG. 12. Sketch of the state space partitioning.
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The open-state/closed-state fluctuations of passive ion
channel proteins are a very suitable candidate for applying
the scheme that we sketched above. In this case there is a
simple, natural partitioning of state space, namely the open
and closed states. In this approach, a channel that switches,
e.g., from the open to the closed state can be thought of as
crossing the boundary from a region of open-state configu-
rations to a region of closed-state configurations. On the
other hand, there exists already a vast array of experimental
literature on the fluctuation properties of these channel pro-
teins; see e.g. Ref. 62, and references therein. Since single-
channel fluctuations can be monitored individually using the
patch clamp technique,63 opening and closing times are
readily accessible for a statistical analysis. In particular, the
distribution of closing times,Pclosed(t), is often observed to
exhibit an algebraic regime with at23/2 power law in many
ion channel proteins.64–67

Although the mutual topology of the open and closed
state partitions is not known, i.e., it is not known whether
only one or both of them percolate, it is reasonable to assume
that there is a much smaller number of open states than of
closed states, since open channels require a much more re-
stricted arrangement of atoms. We can, therefore, assume
that the closed state partitions result in one or more isolated
open patches. The existence of several different patches of
isolated open states in state space, separated from each other
by areas of closed states, would correspond to a situation
where several, structurally very different, open channel con-
formation classes exist. We will assume in the following that
this is not the case, and that a single patch of open states
exists in state space, which is surrounded by closed states.
Assuming spherical symmetry in state space, we immedi-
ately arrive at a picture of the state space partitioning, Fig.
13, that is identical to the picture connected with ligand mi-
gration, Fig. 1, with the exception of a different naming of
the various parts.

Equations~2.7!–~2.10a! then describe the random walk
of an ion channel protein in that part of its state space which

corresponds to closed channel states.68 It enters that part at
R0, and stays there until it leaves the shell by crossing the
boundary atR0 again.R1 corresponds to the size of the full
state space, and the relative size of the state space corre-
sponding to the open state is given by (R0/R1)

d, d being the
state space dimension. Using an outer boundary condition
~2.10b! instead of the reflective condition~2.10a! would cor-
respond to a situation where the shell corresponding to
closed states is again surrounded by the remaining state
space corresponding to open states again. This is not a likely
situation here, but would be relevant if a larger number of
different macroscopic states were involved.

The conditional probability of observing a channel in the
closed state at timet, given that it switched to the closed
state att50, is the probability of finding the random walk at
all in the closed states shell at timet, under initial condition
~2.7!. This is identical to our observableN(t), which was the
ligand concentration in the shell in the ligand migration in-
terpretation of the model. As noted above, the observable
usually reported in measurements of ion channel fluctuations
is the distribution of closing times. Since at timet the pro-
teins that have a dwell timet.t contribute toN(t), this
quantity is connected to the distribution of dwell times
Pclosed~t! via

N~ t !5E
t

`

dtPclosed~t!, ~6.1!

the closed-state time distribution is given by

Pclosed~ t !52
d

dt
N~ t !. ~6.2!

A number of recent studies62,66,69–74undertake to explain
the t23/2 closed-state time distribution observed in many ion
channel proteins. In those studies mainly one-dimensional
models were considered. La¨uger’s microscopic defect diffu-
sion model62 and Dosteret al.’s percolation model73 are no-
table exceptions. However, the latter authors assume that the
random walk is restricted to the largest cluster of a bond
percolation system, and the nature of the state space parti-
tioning remains very unclear in their work.

In all of these models a discrete configuration space was
employed. Although such an approach may give results dif-
ferent from our continuous model if a small number of states
are involved, the results will be qualitatively equivalent for a
large number of states. Incidentally, the latter case is just the
limit for which the t23/2 distribution is obtained in those
models.66,62

Few-state-models, on the other hand, employed usually
for an analysis of ion channel experiments,75,76,77are moti-
vated mainly by multiexponential fits to data.78 It is well-
known, that few-state models are able to reproduce quite
complicated behavior,76 provided the number of parameters
is large enough, see also the discussion in Refs. 79, 80, 81.
However, such models do not provide any insight into ion
channel fluctuations, since they are not based on an under-
standing of microscopic protein dynamics. Our approach, on

FIG. 13. Sketch of the state space partitioning for the ion channel opening
and closing fluctuations.
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the other hand, provides a route for systematically investigat-
ing effects of state space dimensionality, which is not pos-
sible in few-state models.

In light of our results in Sec. IV, i.e., theN(t)}t21/2

behavior for wide parameter regimes, and the connection of
N(t) andPclosed(t) via Eq. ~6.2!, it is no surprise that one-
dimensional models reproduce thet23/2 closed-time distribu-
tion. Any description that models the patch of closed states in
configuration space as a one-dimensional interval will ex-
hibit this behavior.

However, our results for general dimensions raises the
caveat that one should not take this finding as a proof for the
one-dimensional structure of the effective ion channel state
space. Models employing higher-dimensional state spaces
also arrive at the same closed-time distribution for a wide
range of parameter values. The particular properties of the
actual protein configuration space will be reflected only in
deviationsfrom the algebraic behavior, the plateau regime
being one important signature for that. We note, in closing,
that the ‘‘tether-ball’’ model,82 advocated recently—on the
basis of site-directed mutagenesis experiments—for the inac-
tivation of certain ion channels,83,84 belongs to the class of
models that exhibit a state space with a dimensiond.1.

VII. SUMMARY AND DISCUSSION

We have shown that the appearance of at21/2 regime for
the unreacted fractionN(t) in a reaction–diffusion process
described in Eqs.~2.7!–~2.10! is quite robust and indepen-
dent of the space dimensionality of the process. It will appear
whenever there exists a diffusion region of shell-like struc-
ture of sufficient width, controlled by an inner reactive
boundary condition. Due to the independence of space di-
mension, one can conclude that the detailed form of the outer
boundary is irrelevant for the appearance of the algebraic
regime. The insensitivity of these results to space dimension
provides alsoa posteriori support for our modeling the
ligand diffusion process as isotropic. Clearly, the protein ma-
trix itself is far from isotropic, but it is important to note that
there exist universal results for the time-dependence of the
decay ofN(t) which areindependentof even relatively gross
features of the model.

We saw in Sec. III that for an absorbing inner boundary
and no outer boundary,N(t) shows at21/2 decay in one
dimension. In two dimensions the decay ofN(t) is logarith-
mic, while in higher dimensionsN~`! assumes a nonzero
value, the Polya limit. Nevertheless, the final decay to that
limit is algebraic, with an exponent~d22!/2. Incidentally,
that exponent is again 1/2 in three dimensions. However, in
the geometry discussed in the preceding paragraph, absorp-
tion in the boundary layer—effectively a 1d situation—
dominates the algebraic part of the overall decay ofN(t).
Numerical support of this claim was given in Sec. IV B, for
dimensions one through eight inclusive. An analytical proof,
along with an analysis of the conditions under which the
result breaks down, was given in Sec. IV C.

Therefore, the existence of an algebraict21/2 regime in
the decay of the ligand fractionN(t) in ligand migration and

rebinding experiments is by no means conclusive evidence
for a 1d process taking place. On the contrary, such an alge-
braic decay gives no information on the space dimensionality
of the process, as we have shown.

However, there is a clear experimental signature which
differentiates between one-dimensional diffusion and an ef-
fectively higher-dimensional process; we have demonstrated
that the observation of a plateau in a log–log plot ofN(t) vs
t following the algebraic decay regime indicates that the dif-
fusion path of the ligand is effectively higher-dimensional.
Its existence is controlled mainly by the effective dimension-
ality of the diffusion shell, i.e., the parametersd andX, see
Sec. IV D. We note that plateaulike regimes inN(t) have
already been observed, but have been attributed partly to
escape into the solvent~processes III and IV of Austinet al.,1

see also Refs. 85, 86!. Our results indicate that these regimes
could also be a signature of the three-dimensionality of the
ligand migration process.

The existence of the plateau in dimensions three and
higher can be directly related to Polya’s result of nonreturn
of an unbiased random walker to the origin in dimensions
three and higher. An analysis of this claim was presented in
Secs. IV C, IV D, and V. In two dimensions the plateau, or in
this case ‘‘pseudo-plateau,’’ is attributable to the marginal
logarithmic decay of probability in two dimensions.

Our model and results can also be used to analyze the
closing time distribution in ion channel fluctuations, as de-
scribed briefly in Sec. VI. A full treatment of this topic will
be the subject of a separate paper.
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