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ABSTRACT Simplified models of the protein-folding pro-
cess have led to valuable insights into the generic properties
of the folding of heteropolymers. On the basis of theoretical
arguments, Shakhnovich and Gutin [(1993) Proc. Natl. Acad.
Sci. USA 90, 7195-7199] have proposed a specific method to
generate folding sequences for one of these. Here we present
a model of folding in heteropolymers that is comparable in
simplicity but different in spirit to the one studied by Shakh-
novich and Gutin. In our model, the proposed recipe for
constructing folding sequences fails. We find that, as a rule,
the construction of folding sequences is impossible to achieve
hy looking at the native conformation only. Rather, competing
conformations have to be taken into account too. An evolu-
tionary algorithm that generates folding sequences by opti-
mizing both stability of the native state and folding time is
described. Remarkably, this algorithm produces, among oth-
ers, sequences that fold reproducibly to metastable states.

In a recent paper, we have presented a simplified model of
secondary structure formation in polypeptides (1) that com-
bines ideas from the treatment of helix-coil transitions (2)
and of two-dimensional polymer crystallization (3, 4). An
essential feature of this model is a strongly simplified form
of tertiary interactions between elements of secondary struc-
ture that allows one to study the influence of such interac-
tions on the secondary and tertiary structure-formation
process. Due to its essentially two-dimensional character, the
model exhibits a strong neighborhood correlation between
structural elements. However, it is well-known that neigh-
borhood coftrelations in three-dimensional protein structure
(5) and in collapsed polymers (6) are also stronger than
expected from the analysis of three-dimensional self-
avoiding random walks. Models of the type presented here
have so far not been put to use in the study of protein folding
ta our knowledge.* This offers a chance to reexamine results
obtained with other simplified models (8-20), especially
since the model is easily implemented and already can be run
effectively on personal computers. In the foregoing paper,
we studied the homopolymer case (1). We showed that it is
possible to obtain compact, mostly a-helical structures that
resemble globular proteins in helix number and average helix
length. The transition from the random coil to compact
states was found to be essentially glass-like. In this paper, we
present results for the heteropolymer case and use our model
to investigate recently published notions on the construction
of folding heteropolymers.

We represent the conformation of a polypeptide of length
L by a string of labels o; = h, ¢, or ', where i ranges from
1 to L. The conformation A corresponds to residues with
dihedral angles characteristic of a-helices, whereas ¢* and c®
represent random coil residues. We assume that c° residues
do not contribute to the distance between adjacent helices
(i.e., two helices separated solely by c? residues are taken to
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be in contact), whereas helices with at least one residue with
conformation other than c? between them are not in contact.
Thus, the interconversion c® < c¢* allows one to model the
formation and disruption of tertiary contacts between heli-
ces. The free energy of a conformation {o;} with sequence
{A;} is given by

L-1

F({Ui}9 {/41}) = ZH(O-n—h On; 0n+1)[AE(An~2) + AE(An+2)]/2

n=

L-1 L
* n§=:l m=2n:+lcn’M({m})[k(A") + k(Am)]/2

L
- TZIAS(U,,, A). (1]

The three terms in Eq. 1 describe the contribution of hydrogen
bonds, tertiary interactions, and entropic contributions due to
local conformation space restrictions, respectively (compare
ref. 1). '

Following the formalism by Lifson and Roig (2), three
successive monomers must be in helical conformation to be
spanned by a hydrogen bond. Therefore, if 0,-1 = 0, = 0441
= h, we have a hydrogen bond linking residues n — 2 and n +
2. We describe this by defining H(0%-1, 0», 0»+1) = 1 in this
case and 0 otherwise. The strength of the hydrogen bond
between two monomers n — 2 and n + 2 is determined by the
mean of their respective AE parameters. Note that the two
monomers forming the hydrogen bond need not be in the
helical conformation, as opposed to the three monomers in
between them. For consistency, two dummy coil residues 4o
and A +1, with AE(Ap) = AE(AL+1) = 0, are added, which
allow the formation of hydrogen bonds bridging the first three
or last three residues, respectively, but which do not otherwise
contribute to F (21).

Any two helices separated solely by c? residues are consid-
ered to be in contact with each other. In our simplified
treatment of the tertiary interactions, we assume helices to be
arranged in parallel and in register (Fig. 1). All of the residues
of the shorter helix are then taken to be in contact with their
counterparts on the longer helix. This can be formulated as
Cnm({0:}) = 1 when residues n and m are in contact in chain
conformation {o;} and 0 otherwise. The contact energy is
simply taken as the mean of the respective contact parameters
k of the two residues in contact. This interaction scheme does
not take a-helix topology into account and, of course, could be
modeled more realistically, but it serves the purpose of intro-
ducing an additional sequence-dependent type of interaction
into the helix—coil transition model. :

Finally, the entropic term represents only contributions to
the system’s entropy that arise from local conformation space
restrictions. Since the conformation space volume V(h) acces-

Abbreviations: REM, random energy model; MC, Monte Carlo.

*The only other model that we are aware of that includes both tertiary
interactions (in that case, hydrophobic interactions) and secondary
structure formation is by Thomas and Dill (7); however, their model
is quite unrelated to the one presented here.
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Fic. 1. Schematic representation of polymer chain conformation,
L = 20, in which three distinct a-helical stretches have formed. (Left)
Three helices interact with each other (indicated here by black bars
between the helices). The chain conformation might be c*hschacha.
As a shorthand notation, we describe this conformation as 1634.4,
where numbers in boldface stand for helix lengths, and subscripts
indicate loop regions between helices. (Right) Contact between two of
the helices has been broken, resulting in a chain conformation of
c*hecShac®c*ha, or 163d(2)4, where square brackets indicate that the
helices on either side of the loop region are not in contact.

sible to A residues is smaller than that for non-A residues, as
mirrored in a Ramachandran plot (22), the conversion ¢* <
h, for example, is accompanied by a loss in conformational
entropy. We define AS(oi, A;)) = kgln[V (o, A:)/V(ct,A4)].
Since other possible entropic terms for the chain as a whole
(namely, those due to degeneracy of random coil sections) are
not represented, the role of F is equivalent to that of a
Hamiltonian in other models.

Any sequence of residues {4;}, i = 1 ... L, will be
completely characterized by the three parameter sets
{AE(A))}, {k(A;)}, and {AS(0;, A4:)}. We set AS(c%,A;) = 0,
allow two values for each of the three parameters AE(4,),
k(A4;), and AS(h,A;), and consider the 23 = 8 residue types
resulting from the combination of the possible parameter
values as described in Table 1. They have been chosen in such
a way that AS(h) < 0 for all residue types and that both the
hydrogen bond and contact energy parameters can be fa-
vorable as well as unfavorable to structure formation. All the
results presented here have been obtained for a constant
temperature with kgT = 0.108 |AE(A)|.

When looking for the optimal conformation of a given
sequence (in the low temperature limit), one has to take into
account the fact that residues in different positions have to
fulfill different requirements. For example, the residues situ-
ated in the loops between helices do not establish any tertiary
contacts. In addition, only the first and last residues of any loop
take part in hydrogen bonds, whereas central residues of short
helices may contribute to tertiary contacts but not to hydrogen
bonds. Therefore, it would be locally desirable to place residue
types D and G, which contribute favorably to tertiary interac-
tions but unfavorably to hydrogen bonds, in the center of short
helices. Likewise, it would be locally desirable to put residue
types B and E at the first or last position in loops, etc. However,
since correlations between residue conformations, as ex-
pressed by the terms H(0»—1, On, 0n+1) and C,,»({0:}) in Eq.
1, are relevant for determining F, it will usually be impossible
to devise a chain conformation so that all of the residues are
put in a local context that makes optimal use of their potential
interactions. This phenomenon is known from spin glasses and
is called “frustration” (24, 25). It is understood to occur in
proteins too (26, 27). Consequently, given any particular
sequence, it will in general be difficult to determine its
ground-state conformation. In essence, this is what makes
determining protein structure from amino acid sequence a
problem.

TThe homopolymer studied in ref. 1 corresponds to the parameter
values k/AE = 0.6, AS(c®) = AS(c*) = 0, and AS(h)/kp = —4.26 +
In(2) = —3.57, the latter value derived from experimental data first
discussed by Zimm and Bragg (23).

Proc. Natl. Acad. Sci. USA 92 (1995) 8799

Table 1. Characterization of residue types

Type AE AS(h) k P
A -1.0 -2.0 -0.6 1/6
B -1.0 -2.0 +0.3 1/6
C -1.0 -3.57 -0.6 1/8
D +0.5 -2.0 —-0.6 1/8
E -1.0 —3.57 +0.3 1/8
F +0.5 -2.0 +0.3 1/8
G +0.5 —3.57 -0.6 1/12
H +0.5 -3.57 +0.3 1/12

When looking for the optimal sequence for a given target
conformation, sequence optimization procedures will select
appropriate residue types according to the local requirements
of a given target conformation. For example, for a helix of
length five that establishes a tertiary contact in the conforma-
tion, residue types A and D in the central position will both
minimize F. However, it will be impossible to choose between
them simply because, in this local context, the capacity to form
hydrogen bonds is not probed. For loop regions, the situation
is even worse. Thus, the F function for any target conformation
in general will be highly degenerate in sequence space. How-
ever, the properties of residues in neutral or “undecidable”
positions may play a significant role in other possible chain
conformations. In this context, we note that substitutions of
single amino acids in proteins have been extensively studied.
While little is known about the energetic consequences of such
substitutions, it is well appreciated that the resulting structural
changes are sometimes only minor local rearrangements but
sometimes are extensive perturbations of the overall protein
structure (28). From the foregoing it follows that holding any
conformation constant and minimizing F by adjusting the
sequence in sequence space may not suffice to make that
conformation the global minimum space or even a local
minimum in conformation space, let alone to establish a
folding sequence. Such a procedure might even arrive at the
type A homopolymer: for any conformation, this sequence is
a global minimum for F in sequence space but obviously will
not fold into that conformation. Therefore, when constructing
a folding sequence for a particular target conformation, one
has to consider other possible conformations and to introduce
residues that not only favor the target conformation but also
suppress others. This is reminiscent of “negative design”
strategies used by researchers in the field of de novo protein
design (29).

Shakhnovich and coworkers (15-19) have found in their
model that the energy spectrum of a folding sequence exhibits
a pronounced energy gap between the native state and all of
the other conformations—a feature that is not typically found
in the spectra of random sequences. Shakhnovich and Gutin
(16) have demonstrated as a consequence that folding se-
quences for their model can be engineered by minimizing the
energy of the native state with respect to sequence while
keeping the amino acid composition constant. They argue that
the constraint of constant composition not only prevents
convergence to a homopolymer but also ensures that mini-
mizing the energy of the target conformation in sequence
space produces an energy gap between the target and all other
conformations. They support this claim by using results derived
from Derrida’s random energy model (REM) (30, 31) onto
which the ensemble of all possible sequences can be mapped
under certain conditions (26, 32). When applied to proteins or
models thereof, the self-averaging properties of the REM (27)
let one expect that rearranging a sequence to minimize the
target conformation’s energy does not affect the statistical
properties of the energy spectrum of all other possible con-
formations. It is concluded that use of the proposed optimi-
zation procedure lowers the target conformation energy se-
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lectively, while all other conformation energies on average
remain unchanged.

The REM does not make any structural statements about
conformations at all but simply treats their respective energies
as statistically independent—hence, the name. Proteins differ
from the REM in that energies of related conformations are
strongly correlated. Therefore, minimizing the target’s energy
will affect other conformations with similar interactions. To
apply the concepts of the REM to the construction of folding
sequences in a protein model, one has to postulate that
conformations different from but with interactions similar to
that of the target will not interfere with the folding process.
Ideally, they should belong to the target’s potential well in the
energy landscape and should be higher in energy than the
target itself—otherwise, the chain could fold to either of these
conformations also and no folding sequence would emerge.
The question arises whether validity of these assumptions is a
generic property of protein folding models and, thus, of
proteins. For the model presented here, the approach sug-
gested by Shakhnovich and Gutin (16) fails to produce folding
sequences reliably.

To arrive at test conformations and test compositions, we
first generated some random heteropolymer sequences and
tried to establish their ground state conformations. Ten ran-
dom sequences RS; to RS;o for L = 100 were obtained by using
the a priori probabilities p(A4;) given in Table 1. These prob-
abilities have been chosen so that residue types favoring helical
conformations due to their AS or AFE values are a little more
abundant. Thereby, the existence of mostly a-helical ground-
state conformations is ensured. Table 2 shows the resulting
conformations and their sequence compositions obtained by
Metropolis Monte-Carlo (MC) (33) simulations and/or Ge-
netic Algorithms (34). After their respective ground states
were established, each of the sequences was subjected to 100
runs of Metropolis MC simulation in conformation space, with
5000 MC steps each, starting in the all-c* state, a procedure
that will be referred to as a “folding experiment.” Folding
performance was assessed by determining the number of MC
runs (out of 100) in which the sequences encountered their
respective ground states (successful MC runs), the time (num-
ber of MC steps) after which they first encountered it, and how
much of the remaining simulation time they spent in the
ground state once they had reached it. Our results, given in
Table 3, indicate that although random heteropolymer se-
quences in general have a nondegenerate “native” state cor-
responding to the global minimum in F, only few of them will
actually fold reproducibly and stably to this state. This phe-
nomenon has been observed with other models of protein
folding too (15).

With the ground-state conformations and compositions of
Table 2 as a starting point, application of the procedure
proposed by Shakhnovich and Gutin (16) is straightforward.
Holding the conformation constant, we performed for each
random heteropolymer 10 runs of Metropolis MC optimi-
zation in sequence space, with the constraint of constant

Table 2. Test conformations and compositions, L = 100

Composition Conformation*
C A22B16C12DsE14F10GsH 12 23191171143107654,6,6
C A18B12C13D14E20F 10G4Ho 11,8:8:5,91951311355,
Cs A18B14C11D16E14F12G7Hg 319333419510413614,10,
Cs A20B17C10DsE13F9G11H12 131314555519115115,15,7
Cs A19B13C16D10E12F12G7H11  68818382711426481715
Cs A18B16C13D9E10F16G7H11 1103121146757137424:1417
(&7} A14B17C7D10E16F13G10H13  15151513171121134814212:47
Cs A18B21C13D10E14F16G1Hy 110811;3613,18,9,14,
Gy A15B21C15D10E14F10G10Hs  2014313114,10310,8,8,
Cio A21B16C12D9E;5F12GsH7 15120523,1136,529

*For a description of the shorthand notation, see Fig. 1.

Proc. Natl. Acad. Sci. USA 92 (1995)

Table 3. Folding performance of random sequences

Successful ~ Folding time

Confor- Random  MC runs, (MC steps), Average

mation sequence no. of 100 mean * SD stability, %
C RS; 62 1795 + 1224 75% 58
C RS, 46 1153 = 909 41+ 11
Cs RS3 0 — 25.8 = 12.3*
(o RS, 7 2890 + 961 0.1+ 0.05
Cs RSs 12 3187 = 969 48+ 6.1
Ce RSs 21 3263 + 1128 1.7+ 09
Cy RS; 48 2565 + 1172 6.9 = 10.0
Cs RSg 19 3139 * 1277 25.9 *20.9
GCo RSy 2 5314+ 74 104+ 03
Cio RS10 21 2665 + 1313 157+ 4.2

*Determined from simulations starting in the target conformation.

composition. The runs were stopped after 10* MC steps each,
and the optimum sequence encountered so far was chosen
from every run. The 100 sequences S; to Sigo thus obtained
were further analyzed. First, for all of these sequences, we
found that the value of F for the target conformation had
been significantly lowered in all cases (data not shown). In
a second step, each of the sequences was subjected to 10
folding experiments. Inspection of the results showed that 78
of the 100 sequences during the simulations had produced
conformations lower in F than the target conformation and
thus could already be dismissed. The 22 remaining optimized
sequences again were selected for 100 folding experiments
each. Six of 22 sequences failed to reach the target even once.
The results for the remaining 16 sequences are given in Table
4.

While quantitative criteria for folding sequences are difficult

to state, one should demand that a sequence folds rapidly and

reproducibly to its target conformation, which in turn should
correspond to a relatively stable structure. The degree to which
this combined kinetic and thermodynamic criterion is met in
repeated folding experiments can be measured simply by the
average simulation time spent in the native conformation.
Only 3 of 100 optimized sequences seem to meet this criteri-
on—namely, sequences Sgy, Sg1, and, with reservations, Sv.
Thus, the described procedure results in folding sequences for
only 2 of the original 10 conformations.

Given a criterion of folding performance, there are a
variety of stochastic optimization procedures one can choose

Table 4. Folding performance of optimized sequences

Successful ~ Folding time
Confor- Optimized MC runs, (MC steps), Average
mation  sequence no.of 100 mean * SD stability, %
C Se 85 1672 = 1207 294+ 82
C Si2 96 899 + 957 209+ 35
Si3 63 531 579 379+ 31
Si6 68 1234 + 981 289+ 75
S19 80 1577 = 1237 104 = 39
Cs S23 19 1993 + 1264 69.8 £ 20.5
Cs — — — —
Cs — — — —
GCs Ss2 59 1284 + 690 157% 35
Ssa 17 1689 = 1191 343 £ 16.2
Sso 89 665 + 688 414+ 24
Cy — — — —
Cg S76 73 395 + 522 581* 35
Sso 74 480 + 524 742 * 47
Co Sa1 97 1065 = 853 715 % 2.7
Ses 99 1152 = 725 338 15
Sgo 52 1264 + 1089 599+ 21
Soo 32 793 = 681 259 1.1
Cio S100 89 1338 *+ 1009 75% 27




Munster on March 5, 2020

und L

atu

Biophysics: Ebeling and Nadler

to optimize sequences. To construct folding sequences for
our model, we have experimented with an optimization
procedure that relies heavily on evolutionary processes and
will be described in more detail elsewhere. It consists
basically of two separate evolutionary optimization steps. In
the first step, only stability of the target conformation is
selected for. To this end, repeated Metropolis MC simula-
tion runs, starting in the desired target conformation, are
performed for a population of sequences, with the random
sequences of Tables 2 and 3 as initial population. The total
time spent in the target conformation is taken as the fitness
of each sequence, according to which it is represented in the
following simulation round. Random mutations and cross-
ing-over allow for changes in the competing sequences,
notably without any constraints on composition or even
average composition. This optimization procedure is
stopped when average stabilities of about 80% have been
reached for the target conformation.

The second optimization step then starts with the population
of sequences obtained in the first one. Now, the sequences are
subjected to repeated folding experiments—i.e., simulation
runs starting in the all-c* state. Again, the time spent in the
target conformation is taken as their respective fitness. Thus,
in this second optimization step, sequences are selected that
fold rapidly and reproducibly to the target conformation and
stay there for as long as possible.

It is important to note that the second optimization step
alone is unlikely to produce folding sequences, since the
probability for most random sequences to hit the desired target
conformation is vanishingly small. Only after the first optimi-
zation step, which ensures that the target conformation is at
least a relatively deep local minimum in conformation space,
is there a sufficiently high probability for the sequences of the
population to reach the target conformation when starting
from the random coil state. Further details of the described
procedure will be presented elsewhere.

In comparison to Tables 3 and 4, we present in Table 5 data
for the folding sequences designed to fold to the conformations
C; to Cyp of Table 2. Success rates and folding times of all of
these sequences are comparable to those of the best ones in
Table 4, and their average stability is significantly higher. Note
the large variances in the folding times given in Tables 4 and
5; this illustrates the necessity to study the folding behavior of
test sequences by a sufficiently large number of folding exper-
iments.

In addition to the results presented so far, we have carried
through other lines of sequence analysis. It has been repeatedly
stated that a necessary and sufficient condition for folding
sequences in their model is that the native state is a pro-
nounced energy minimum—i.e., that there is a large gap
between the lowest and second lowest states in the energy
spectrum (18, 19). Since a complete enumeration of states is
not possible with our model, we have developed other strat-

Table 5. Folding performance of evolved sequences

Successful ~ Folding time

Confor- Optimized  MC runs, (MC steps), Average

mation sequence  no. of 100 mean * SD stability, %
Ci Fi 99 446 = 414 90.1 2.6
C; F, 93 326 + 379 709 +2.3
Cs F3 93 1513 + 1005 84.1x9.1
Cq Fa 88 956 + 828 828 +94
Cs Fs 80 1521 + 760 89.2+22
Cs Fe 88 1627 + 841 64.5 + 8.3
Cy F7 93 1172 + 612 65.7 5.9
Cg Fg 83 909 + 647 733 + 44
Co Fo 94 1083 + 920 759 9.1
Cio Fio 96 1183 = 698 778 =42

Proc. Natl. Acad. Sci. USA 92 (1995) 8801

egies of obtaining the relevant data. Starting in the all-c*
conformation, we performed 50 folding experiments for each
sequence under study. During each simulation run, the 100
conformations lowest in F were stored so that, after 50 runs,
somewhere between 100 and 5000 different conformations
were obtained for each sequence. The spectra of Fig. 2 show
the F values of these conformations up to a boundary of F —
Foin = 1.

Looking at Fig. 2 Top, one first notes that the random
sequences RS; to RS;¢ do indeed lack a large gap in their
spectra. The little variation there is does not seem to be
correlated with folding performance. Fig. 2 Middle and Table
4 show that the procedure of lowering the ground state in F
with the constraint of constant composition does not always
succeed in producing a notable gap in the spectrum, as one
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FIG. 2. Spectra of various sequences discussed in the text. Spectra
are plotted relative to their lowest states and are not supposed to be
complete in their upper parts. For RS3, Fmin does not correspond to
the ground state given in Table 2 but does correspond to the lowest
state found during folding experiments.
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would expect from the analysis by Shakhnovich and Gutin (16)
based on the REM. This indicates that the model presented
here does not belong to the REM universality class.¥ In
addition, the spectra of some nonfolding sequences (for ex-
ample, sequences S13, Sz3, and Sso) exhibit gaps comparable to
or wider than those of the folding sequences. Thus, a gap of the
size found for those sequences is not a sufficient condition for
a folding sequence. Most of the spectra of the folding se-
quences (Fig. 2 Bottom) do indeed show the expected large
energy gap, which ensures thermodynamic stability of the
ground state. Remarkably, however, it turns out that this is not
a necessary condition for a folding sequence either. Sequence
F; has two nearly degenerate states at the bottom of its
spectrum, of which the only marginally lower one is stably
attained in well over 90% of the folding experiments, obviously
because of kinetic preferences. Even more interesting is Fg
which as a product of our simulated evolutionary process folds
reproducibly and stably (on the timescale of millions of MC
steps; data not shown) to its target conformation, although this
is only a local minimum and lies well above the ground state
in the spectrum (marked by arrows in Fig. 2 Bottom). Once
again, kinetic factors must be responsible for this behavior. It
is interesting to note that similar results have recently been
reported for some proteins too (36). Therefore, we emphasize
that to identify a folding sequence, one has to consider not only
spectra of conformation energies but also possible routes
connecting the corresponding conformations in conformation
space. For example, one has to demand that there be routes via
only moderate barriers of free energy from all of the other
kinetically accessible local minima to the ground state. Results
pointing in this direction have been obtained for other sim-
plified protein folding models, too (9-12).

In ref. 17 Shakhnovich proposes a method, also based on the
REM, to obtain a threshold value F. for any given random
sequence and target conformation. Folding sequences in their
target conformation should lie well below this threshold value.
We found, however, that none of the folding sequences
presented in this paper comes even close to satisfying this
criterion.

To conclude, the REM has been applied in several studies
of protein structure and folding behavior with interesting
results (26, 32, 37-40). However, our data indicate that some
results derived from it do not hold for the model presented.
Therefore, we suggest that its concepts be applied only care-
fully when studying the folding properties of protein-like
heteropolymers. In particular, as the main result of this work,
we object to the notion that folding sequences in general can
be constructed by looking at the target conformation only, as
may be possible for models belonging to the REM universality
class. Rather, a host of other conformations that are differerit
from the target may have to be taken into consideration. We
suppose that for more realistic models, only optimization
approaches that probe dynamic properties are suited to
achieve this goal.

It is a pleasure to thank T. Krausche for continuing and stimulating

In ref. 35 it is argued on the basis of various approximations that
heteropolymers in d < 2 dimensions do not belong to the REM
universality class. However, the arguments presented there do not
hold for d = 2. Therefore, we believe that essentially two-dimensional
models like ours cannot be excluded a priori from that universality
class.
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