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Abstract. Intramolecular electron transfer (ET) processes with the main energetic 
contributions coming from the solvent reorganization are investigated for a polar 
medium that exhibits dynamic disorder. Dynamic disorder provides a description 
of the anomalous relaxational behavior of correlation functions in complex glass-like 
systems, alternative to static disorder. In particular, the questions addressed are 
whether time-resolved observation of nonexponential ET in such a medium can 
readily distinguish experimentally between static and dynamic disorder and whether 
a contribution of intramolecular degrees of freedom to the ET can be identified by it. 

1. INTRODUCTION 
There has been a rapidly growing interest, experimen- 
tally'-" as well as the~retically,'~-~' in the influence of 
the dynamics of the surrounding medium on electron 
transfer (ET) processes. A class of reactions of particu- 
lar interest are intramolecula?'' ET processes where the 
reaction is coupled to polarization fluctuations of the 
environment. For the case that the relaxation of the 
polarization fluctuations of the surrounding medium 
has a simple Debye form, and the main energetic con- 
tributions to the ET come from the solvent reorganiza- 
tion, the ET exhibits an approximately single-exponen- 
tial time behavior, with a rate constant then given 
bY20,22,29 

where T is the longitudinal dielectric relaxation time of 
the solvent. I is a numerical factor depending on the 
free energy bamer AG* of the reaction:0p22 with 

1 = 1 n 2 + 2 l  1 d~ exp[( 1 - x2)AG*/k0T] - 1 
1 - 2  

for AG*lk,Tlarge. (2) 

The free energy bamer is related to the standard free 
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energy AGO of the reaction by AG* = (AGO + &J2/4&, & 
being the reorganization energy of the solvent. The rate 
constant k, used in Eq. (1) is the semiclassical equili- 
brated ET rate constant, 

(3) 

and refers to adiabatic as well as nonadiabatic pro- 
ce~ses .~O,~~ The detailed functional form of the prefactor 
vq in Eq. (3) depends on the adiabaticity of the 
rea~tion.~' In the limit of fast dielectric relaxation of the 
solvent, the experimentally observed rate constant km 
will be k,. 

It has been demonstrated theoretically that a non- 
vanishing contribution A from intramolecular degrees 
of freedom to the total reorganization energy 1 = 

3.i + & can lead to considerable deviations from a single- 
exponential time behavior of the ET process,2°,22 and 
there are also recent experimental indications for this 
vibrational effect." Such a situation voids the concept 
of a time-independent ET rate constant km, and the 
complete time behavior of the reaction process has to 
be taken into account for a comparison of theory and 
experiment. 

However, a nonexponential behavior of the observed 
ET process may be due not only to a competition be- 

k, = vq exp( - AG*/kOT), 
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tween fast intramolecular and slow solvational degrees 
of freedom, but also can be due to a non-Debye be- 
havior of the fluctuations in the medium surrounding 
the ET complex. There are recent experimental indica- 
tions for such an effect for the case of ET processes in 
higher alcohols (glycerol and propylene g l y c ~ l ) . ~ J ~  
These particular solvents belong to the large class of 
complex or “glassy” systems where fluctuations exhibit 
an anomalous nonexponential relaxation beha~ior.’~ 
For example, the frequency-dependent dielectric con- 
stant, involved in the polarization fluctuations, takes on 
a Davidson-Cole f ~ r m ’ ~ ~ ’ ~  in those higher alcohols. 

The generic physical reasons for anomalous relaxa- 
tion in complex systems and the question of whether 
there is some universal concept that allows a unified 
description of anomalous relaxation in various systems 
are still unre~olved.’~*’~ Static models, based on inho- 
mogeneity of the medium, as well as dynamic models 
describing complex local dynamical processes, have 
been both employed as possible descriptions of such 
relaxation behavior of fluctuations.’5936 Particularly, a 
static model has been employed recently as an explana- 
tion of the findings of nonexponential ET in higher 
al~ohols.~’ However, only its predictions for the short- 
time behavior of the reaction were compared with the 
observations.’O 

In a recent article27 we have provided a method for a 
description of the complete time behavior of ET obey- 
ing the approximate Eq. (1) in a medium exhibiting 
static disorder. We continue this work by analyzing 
here instead the effect of a dynamic model for anoma- 
lous relaxation, a model which describes dynamic dis- 
order, and by comparing the results with those from the 
corresponding m ~ d e l ~ ’ ~ ~ ~  describing static disorder. The 
questions we wish to address with this work are: (i) do 
the models considered here for static and dynamic 
disorder, models that describe the same anomalous 
relaxation behavior of the polarization fluctuations, 
predict a markedly different dynamic behavior of the 
ET process; and (ii) is it possible to distinguish non- 
exponential ET reaction behavior due to the contribu- 
tion from intramolecular degrees of freedom from the 
nonexponential behavior due to anomalous relaxation 
behavior of the polarization fluctuations coupled to the 
ET? 

We note that the static disorder and dynamic dis- 
order models for ET that will be discussed in the 
present paper both use a certain approximation (in 
particular, Eq. (1)) in order to simplify the treatment. 
This study has, therefore, mainly a qualitative nature 
but can be useful in providing insight into a more 
rigorous mainly numerical treat men^'^ 

2. STATIC AND DYNAMIC MODELS 
FOR ANOMALOUS RELAXATION 

In many complex systems, particularly ones that show 
glass-like behavior, the autocorrelation function of a 
quantity x, with a time scale T of the relaxation, 

C(tlz) == (x ( t )x (0 ) ) / (x2 ) ,  (4) 

shows an anomalous relaxation beha~ior.’~.’~.’~ Anoma- 
lous means here that I d In C(tlz)ldt I decreases with 
time, i.e., the relaxation is slowing down. In case of a 
single-exponential relaxation, this quantity would be 
constant. Experimentally, the functional form of the 
correlation function remains relatively constant when 
macroscopic parameters such as the temperature are 
varied, whereas the time scale T shows a strong tem- 
perature dependen~e.~~.’~ 

An example for the functional form of C(tlr) is the 
Davidson-Cole (DC) form 

CDMTO) = w, tl.ro)lr(B), ( 5 )  

where r (p ,  t lzo) denotes the incomplete Gamma 
function,’* and r(p) denotes the usual Gamma func- 
tion. p and the time scale z0 are the only parameters for 
this strongly nonexponential relaxation. When x in Eq. 
(4) represents the polarization of the medium, this 
particular functional form gives rise to the well-known 
Davidson-Cole form of the frequency-dependent di- 
electric ~onstant~’.’~ 

Other functional forms, e.g., the Kohlrausch- 
Williams-Watts form, are discussed in Refs. 32-34. 
Since Eq. (6) describes the dielectric behavior in 
glycerol-like solvents, we will be concerned only with 
the Davidson-Cole behavior in this paper. 

In the static disorder approach, it is assumed that 
in a medium which shows anomalous relaxation the 
local relaxation behavior of the correlation function 
(x(t)x(O)) is single-exponential, i.e., has the Debye 
form. However, the medium is assumed to be inhomo- 
geneous in this static disorder model, and the local 
relaxation time T’ varies within the medium according 
to a distribution function g(?). The final form of the 
correlation function is then given by averaging over all 
local processes, 

C(tlz) = Srn 0 d.r’g(z’)e-‘”’, (7) 
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where the overall time scale ‘I can be chosen to be the 
mean relaxation time with respect to the distribution 
g(?’), i.e., 7 = d?’g(?’)T’ = ( T ’ ) ~ .  A particular dis- 
tribution function g(7’) that reproduces a Davidson- 
Cole behavior of the dielectric constant, Eq. (6),  is34 

with gK(T’) being zero for T‘ > 7,. 

An approach based on such an inhomogeneous distri- 
bution of relaxation times within a medium makes 
sense physically for inhomogeneous systems such as 
disordered solids, or, perhaps, proteins at low 
 temperature^,^^ although even in these cases the local 
dynamics may be much more complicated. However, 
there are many liquid systems, such as the higher 
alcohols, whose correlation functions also show an 
anomalous complex relaxation behavior. Particularly, 
here one should consider the possibility that the local 
relaxational behavior is the same everywhere within the 
medium, but obeys a more complicated dynamics. In 
such systems, the fluctuations of the quantity x could be 
coupled to one or more additional degrees of freedom 
which, in turn, also undergo fluctuations. Such an 
additional degree of freedom could be a local “free 
volume”,40 or, in the case of glycerol and glycerol-like 
solvents, the number of saturated hydrogen bonds.4’ 
Both quantitites could affect the local relaxation of the 
solvent molecules, e.g., the relaxation process being fast 
for a large free volume or for a small number of 
saturated hydrogen bonds. 

Denoting by v the deviation of this new degree of 
freedom from its average value, we can now write down 
a simplified stochastic model for the local relaxation of 
x ,  the Fokker-Planck equation 

l l  at [ 7 m  7, 

a 1 - P(x, v, t )  = - U X )  + - Uv) P(x, v, 1 )  (9) 

for the probability distribution P ( x ,  u, t )  of fluctua- 
tions. The time scale T, of the fluctuations of v could be 
the time scale of the free volume or hydrogen bond 
fluctuations; 7x(v) is the v-dependent time scale of the 
fluctuations of x. L(x) and L(v)  have both the form: 

U X )  = 2- (5 + x) 
ax ax 

and are Fokker-Planck operators that describe Orn- 
stein-Uhlenbeck processes which, taken by themselves, 
would lead to a single-exponential relaxation of the 
respective correlation functions. Due to the coupling of 
the relaxation time zx(v) to the u fluctuations in Eq. (9), 

the relaxation behavior of x is now more complicated. 
Such a model may be termed a model for dynamic dis- 
order, in distinction from the static disorder models 
described earlier. In the former, the relaxation time rX is 
still distributed inhomogeneously in the medium at any 
instance of time, but it is also fluctuating locally. 

It is easy to see that, employing 7, as the overall time 
scale T, the functional form of C(tl7) depends only on 
the dimensionless part of the w dependent relaxation 
time 7x(v), which we will call f (v ) :  

f(U) = ? x ( U ) / T D .  (1 1) 

From the observation that the functional form of the 
correlation function C(t/ .r)  is relatively insensitive to 
the change of external parameters, e.g., to temperature 
~ h a n g e , ’ ~ . ~ ~  one may infer that a particular functional 
form of f (v )  determines the local fluctuations of x over a 
wide range of these parameters. Only the time scale q, 
underlies a strong dependence on them. 

Particularly for the case of a Davidson-Cole be- 
havior of the correlation function, Eqs. ( 5 )  and (6), 
Anderson and Ullmann4’ noticed qualitatively that a 
function 

(12) 
a exp[ + v ’/2p’] for v L 0, { a exp[ - v2/2p’] for v< 0, f (v )  = 

can give a good approximate description of a David- 
son-Cole function. We have made an extensive numeri- 
cal study with the above choice of the “free volume”- 
dependent relaxation time?’ and present in Table 1 
results for the best choices of the parameter a in Eq. (1 2) 
for various values of p‘ to obtain Davidson-Cole be- 
havior with a particular exponentp. Those results will be 
employed in this paper. The ratio of the parameter ro of 
the Davidson-Cole form, Eq. (6) ,  to the time scale zu 

Table 1. Parameters P’, a, and T ,  of a Dynamic Model for 
Davidson-Cole Behavior with Exponent P and Time Scale T,, 

Eqs. (6) and (1 2), and Exponent P” for Asymptotic Behavior of 
Short-Time Rate Constant k, Eq. (20) 

P‘ a! T o k  B P“ 

0.3 0.59 1.31 0.54 0.38 
0.4 0.80 1.38 0.6 1 0.47 
0.5 1 .oo 1.45 0.70 0.57 
0.6 1.18 1.53 0.77 0.67 
0.7 1.38 1.66 0.85 0.78 
0.8 1.60 1.81 0.83 0.85 
0.9 1.80 1.95 0.86 0.92 
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of the v fluctuations is constant for given parameters a 
and 8'. This ratio is given in Table 1. 

The dynamical model presented above does not 
attempt to provide a universal physical explanation for 
anomalous relaxational behavior in each individual 
case. Rather, it is an attempt to model the local fluctua- 
tions of a quantity x ,  e.g., the polarization. These local 

process. From a phenomenological point of view, a 
mathematically (but not necessarily physically) correct 
description of the local fluctuations of a quantity is 
sufficient for the analysis of the effects that these 
fluctuations have on reaction processes that are coupled 
to them. 

given in which the approximation Eq. (1) is used to 
describe the effects due to polarization fluctuations on 
the local ET processes. The local rate for the ET is given 
again by km(f ) ,  but now with T replaced by T ~ ( v ) .  The 
v fluctuations then give rise to the reaction-diffusion 
equation: 

fluctuations, in turn, determine the dynamics of the ET - kETITx(v)l} Pr(v7 t ) 7  (15) 

which describes the time behavior of the reactant dis- 
tibution P,(~, t) .  The stationary distribution of the 
fluctuations, po(v) = exp( - 2/2)/@, is to be used as 
initial reactant distribution p,(,,, = 0) in E ~ .  (1 5). The 
unreacted fraction of molecules in the dynamic dis- 
order model is then given by: 

3. ET UNDER STATIC AND DYNAMIC DISORDER 
The previous section provides us with the means to Q ( t )  = Jm dvP,(v, t ) .  (16) 
compare the effects of static and dynamic disorder on -m 

the ET process- Within the approximation Eq- ( l )  for For the numerical solution of the above reaction-dif- 
the effects due to polarization fluctuations of Debye fusion problem, we have employed the generalized 
form, the local ET processes take place with a rate moment method as described in Ref. 22. 

fraction ofunreacted molecules at time t ,  Q(0, is then process that arises from treating the polarization flue- 

tial reaction processes over all local relaxation times T ,  those obtained using the above dynamic In 
order to make possible a better comparison with the 

Q ( t )  = J 0 dTg(T)exp[ - kET(T) t l '  (' 3, qualitative form of observational curves that arise from 
different experiments, log Q ( t )  is plotted vs. t in Fig. l a  

In Ref. 27 a numerical method was given to approxi- (corresponding to a fluorescence decay experiment as, mate this function for general distributions g(r ) ,  and for example, in Ref. and log Q ( t )  vs. log in Fig. 1b 
we have analyzed its behavior for the case of a distribu- (corresponding to absorption experiments as, for exam- 

scales). case, Eq. (13) becomes 

As noted above, for a particular value of the product 
IkeTo the static model (with Eq. (1)) predicts a unique 
function for the ET time behavior. However, the dy- 
namic model (with Eq. (1)) predicts a somewhat dif- 
ferent behavior for different combinations of the para- 
meters I and ker, at a fixed value of IkeTo, as seen in Fig. 

(In the dynamic model, Eq. (151, the ratio T u ~ T o  is 
given for various p,s  Table 

For small values of keTo the ET is single-exponential 
in the dynamic model, even for large values of the 

constant km(T)- In the case of static disorder, the ~ i ~ .  1 results for the tirne behavior of the ET 

given simply by an average Of the local sinde-exponen- tuations according to the static model are compared to 

m 

tion, Eq. (817 satisfying the Davidson-Cole plot. In this ple, in Ref. 43, which could a wider range oftime 

sin(n/?) Q ( t ) = - L  dxxa-'(l - x ) - ~  

(14) xexp(  - ket ) .  
1 + Zketox 

From this equation, it can be readily Seen that, using 
k;' as time scale, the reaction process depends on the 
reaction bamer parameter AG*/kBT and the time scale 
T~ of the fluctuations only via the product of parameters 
k 7 p  Paflicularly7 for large of this product the 
behavior of Q ( t >  can become nonexPonentia1.27 We 

product ZkeTp In this single-exponential regime, the rate 
constant is given by the averaged rate,@ defined by 

shall see that this dependence of the time behavior of 

longer holds for dynamically disordered systems. 
In the dynamic disorder model, the polarization 

fluctuations are coupled to the vfluctuations via Eq. (9), 
and a treatmenP7 of the reaction problem then involves 
Eq. (A5). In the present paper, the simplified solution is 

Q(t) ,  for a given p ,  on the single parameter ZkeTo no (17) 

Only for large values of kezu does the time behavior of 
the ET become nonexponential (as in Fig. la). There is 
a noticeable difference in the behavior of static and 
dynamic models and for different values of for the 
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Reduced time k,t 
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10 100 1000 

Reduced time, k,t 

Fig. 1. Effects of static (dashed line) and dynamic disorder 
(solid line) on the time behavior of ET processes; p’ = 0.5. 
a. logQ(t) vs. t ;  the parameters of the respective lines 
are (from bottom to top) k&= I ,  10, 100. b. logQ(t) vs. 
log t ;  the parameters of the respective lines are (from left to 
right) k ~ ,  = 1, 10, 100; note that T~ is related to T“ according to 
Table 1. 

dynamic model at fixed Zk,t,. This behavior can be 
seen clearly in Fig. 1. However, as seen there, for an 
increase of a factor 100 of k,zu, keeping ZkeTo fixed, the 
time scale of the decay of Q ( t )  at long times changes 
only by about a factor of 3. This somewhat logarithmic 
dependence of the time scale of Q ( t )  on the time scale 
of the fluctuations (under the restriction of constant 
Z ~ , T ~ )  may not be easily detectable in an actual experi- 
mental situation. 

4. ASYMPTOTIC AND AVERAGED PROPERTIES 
A simpler approach to the nonexponential behavior of 
the unreacted fraction Q ( t )  is to analyze not the full 
time-dependence but its averaged and asymptotic prop- 

erties only. Two natural quantities for such an analysis 
are the short-time rate constant 

and the mean reaction time 

T~ = 1 dt Q( t ) .  (19) 

Of particular interest is how both quantities scale with 
the time scale T of the fluctuations. 

In the case of a static description of the anomalous 
relaxation of Davidson-Cole form, the short-time rate 
constant k, and the mean reaction time T~ have been 
determined, assuming Eq. (l), to be23.27 

k e l k = ( l  +ZkeTo),)s, (20) 

(21) 

We note that for any functional form g(r’) of static 
disorder the mean reaction time T~ has the general form: 

(22) 

where ( T ’ ) ~  is the mean relaxation time of the fluctua- 
tions, averaged over the distribution of local relaxation 
times g(7’). Equation (22) can be seen immediately by 
inserting Eq. (1 3) into Eq. (1 9). Since ( T ’ ) ~  is the time 
scale of the fluctuations in the static model, the func- 
tional form of the scaling of r, with the time scale (r’)# 
of the fluctuations is always linear, and it is indepen- 
dent of the functional form of g(r’). 

For the case of ET in a dynamically disordered 
system, as described by the reaction-diffusion Eq. ( 1  5),  
the short-time rate constant k, is given by the averaged 
rate defined in Eq. (1 7), i.e., 

and 

keTa = 1 + Zk,T,-,. 

k,Ta = 1 + Zke(T’)g, 

k = (kEr). (23) 

For the particular choice off(v) for the Davidson-Cole 
behavior, Eq. (1 2), we have determined numerically 
according to Eq. (1 7). The results are shown in Fig. 2 
and compared with results for the short-time rate con- 
stant from the static model, Eq. (20). It is seen in Fig. 2 
that the numerical values for k, from the static and from 
the dynamic models are fairly close. This property was 
observed already in the previous section. It can also be 
seen in Fig. 2 that the short-time rate constant from the 
dynamic model obeys a power law 

kJk, a (ZkeTo)8” (24) 

for large values of the product Z ~ , T , .  The value of the 
exponent J3” in Eq. (24) depends on the value of the 
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1 10 100 1000 

Parameter I keTO 

Fig. 2. Short-time rate constant k, vs. T, for static (dashed line) and dynamic (solid line) models; the parameters of the respective 
lines are (from bottom to top) 8' = 0.9,0.8,0.7,0.6,0.5,0.4,0.3. 

parameter 8' in the function f(u), Eq. (1 2), and values 
are given in Table 1. As can be seen there, p' also 
determines the value of the parameter /3 for the corre- 
sponding Davidson-Cole function. One can see from 
Table 1 that for a particular value of p' the value of p 
for the corresponding Davidson-Cole function and the 
value of p" for the asymptotic behavior of the short- 
time rate constant are not markedly different. 

Eq. (19), of the ET 
process described by the reaction-diffusion, Eq. (1 3, 
can be written in the formal expression" 

The mean reaction time 

Ta = 1 k&&J)] - - L+(u) }-111), ( I( 7, 
(25) 

where ( 1 I )  denotes a scalar product with Po(u) as 
weight function, 

( h  IAlg) = Ja P o ( W M v ) g ( ~ M v .  (26) 
-a 

b + ( u )  is the operator adjoint to the Fokker-Planck 
operator, Eq. (lo), 

L+(u)= - - u  -, 
t u  )aau 

and I 1) is the constant function, with the value 1, and 
is also the eigenfunction of L+(u) with the eigenvalue 
zero. Equation (25) can also be cast into the form 

k T a  = 

For large values of  kc^,, this expression can be approxi- 
mated by 

k 7 a  x ~ U ) k 7 0 ,  (29) 

where 

This result demonstrates that in the dynamically dis- 
ordered system the mean relaxation time of the ET 
depends linearly on the time scale T~ of the fluctuations 
(for slow fluctuations). Such a result was already ob- 
tained for the case of the statically disordered model. 
There the proportionality constant c( I )  was simply 
equal to I, see Eq. (21). Here the proportionality con- 
stant c ( I )  is given by the matrix element, Eq. (30). We 
note that 7,h0 is a constant for a particular functional 
form of the relaxation of the correlation function, as 
shown in Table 1 for the Davidson-Cole case. Although 
the dependence of c(I)  on the parameter Z looks more 
complicated here, numerical calculations show that c(I )  
is still very close to being linear in I, so that any de- 
viations may not be detectable experimentally. 

5. DISCUSSION 
In the present paper, the influence of polarization fluc- 
tuations on intramolecular ET processes was explored 
for the case that the fluctuations show an anomalous 
relaxation behavior, and that the main contribution to 
the reorganization energy 1 comes from the solvent 
reorganization energy A,,. The focus was on the effects of 
a particular dynamic disorder model on the time be- 
havior of the ET process, as opposed to the effects of 
static disorder. Both static and dynamic disorder are 
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possible descriptions for anomalous relaxation of fluc- 
tuations. The treatment was centered here mainly on 
fluctuations of Davidson-Cole form, Eq. (6), but the 
analysis can be extended to other functional forms of 
the fluctuation relaxation time-scale function f(u) and 
the local relaxation time-distribution fu.nction g(~9.4~ 

In Section 3 we showed that the time behavior of ET 
processes predicted by the static disorder model differs 
from the time behavior predicted by the dynamic dis- 
order model. However, for a distinction between both 
models on the basis of the experimentally observed ET 
time behavior it is necessary to know the parameters k, 
and AG*IkBT for the ET system under investigation, 
e.g., from other experiments. The independence of the 
static disorder model to variations of the parameters I 
and keTo, with the product IkeTo held constant, may not 
be sufficient for such an experimental distinction, con- 
sidering the various uncertainties. The reason is the 
somewhat logarithmic dependence of the time scale of 
ET in the present dynamic disorder model on the 
variations of k,T,, at constant Ik,z,. 

The results of the last section showed that the scaling 
behavior of both the ~hor t - t ime~~ rate constant k, and 
the mean relaxation time T, with the time scale T ,  of the 
fluctuations, k,lk, a (k,zo)-r’ and k ~ ,  a k,ro, respec- 
tively, are relatively independent of whether a static or 
the present dynamic model is employed for the model 
description of the Davidson-Cole fluctuations. Within 
the range of validity of the models employed (Appendix 
and Ref. 37), this fact demonstrates that an analysis of 
the scaling of either of these quantities does not show 
a marked difference between the above static and dy- 
namic disorder models. 

The scaling behavior of the mean reaction time T,,  

namely the linear dependence of T~ on T ,  for large T,, 

holds for both the static as well as for the present 
dynamic disorder model, irrespective of the form of 
g(T) orflv). The scaling of the mean reaction time T,, 

therefore, does not markedly distinguish between a 
Debye and a non-Debye form of the polarization fluc- 
tuations nor between static and dynamic disorder. 

These results for T ,  hold for the limiting case of a 
vanishing contribution 2, of intramolecular degrees of 
freedom to the reorganization energy 1 = 2, + &. It was 
shown earlie9’ that a nonvanishing contribution 2, 
from intramolecular degrees of freedom can lead to an 
asymptotic behavior of the mean reaction time that has 
a scaling form 

k T a  cc  TOY (31) 

for 0 5 2, /A,, < 1, and for li 112, > 1 the mean reaction 
time approaches a finite value for T,  - a , 

Ta + Ta( a)- (32) 
In Eq. (3 1) 0 < a 2 1 holds, and the exponent a and 

T ~ ( C O )  in Eq. (32) both depend on A/& and on the free 
energy barrier AG*IkBT. For the limiting case 4 /;lo = 0, 
the exponent a becomes unity. These results were dem- 
onstrated in Ref. 22 for polarization fluctuations of 
Debye form. This difference from the T~ behavior for 
non-zero 2, I& warrants further investigation and offers 
the possibility that it can be employed for a reliable 
experimental distinction between vanishing and non- 
vanishing contributions of intramolecular degrees of 
freedom to the reorganization energy. 
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APPENDIX 
A model for the coupling of ET processes to polariza- 
tion fluctuations of Debye form with relaxation time T 

that also allows for any (assumed rapid) vibrational 
reorganization is given by the reaction-diffusion equa- 
tion 

[1 I a 
at 
-P,(x, t ; r )= -L(x)-k(x) P,(x,t ;r)  (Al) 

for the reactant distribution function P,(x, t; T ) . ~ ~ * * ’  
Equation (Al) describes a polarization-dependent (i.e., 
x-dependent) ET reaction process, given by the x- 
dependent rate constant k(x), which is coupled to x- 
fluctuations of Debye form governed by the Fokker- 
Planck operator I&), as in Eq. (10). In the present 
paper, we are interested in the particular case of a 
vanishing energetic contribution of vibrational degrees 
of freedom to the reorganization energy, which results 
in a k(x) of the form20.22 

(‘42) 

where P,(x) = exp( - x212)/fi is the stationary dis- 
tribution of the x-fluctuations and where xc= 

Equations (Al) and (A2) can lead to a single-ex- 
ponential ET time behavior with Eq. (1)’as rate con- 
stant. However, for large values of k,T there can be 
deviations from the single-exponential behavior if the 
free energy bamer parameter AG*IkBT is small 
(AG*IkBT 5 1). We note that all considerations in the 
present paper based on Eq. (1) are valid only with that 
restriction. 

k(x) = keS(X - Xc)lPo(X), 

J-T. 

Nadler and Marcus I Electron Transfer and Dynamic Disorder 



76 

Equation (Al) also provides a starting point for a 
more rigorous treatment of the effects of static and 
dynamic disorder of polarization fluctuations: 

In the case of static disorder, the time behavior of 
the fraction of unreacted molecules is given by an 
average of the time behavior of the local quantities 
Q(t;  7’)  over the distribution of local relaxation times, 
g(7’), i.e., 

Q(t)  = J d~’g(r’)Q(t;  7’). 

Q ( t ;  7’)  = J-mm dxP,(x, t ;  7 9 ,  

(‘43) 

The 7‘-dependent time behavior of the local fractions of 
unreacted molecules is given by 

644) 

where P,(x, t; 7’)  is the solution of Eq. (Al) with 7 

replaced by the local relaxation time 7’. 

In the case of dynamic disorder, the x-fluctuations 
are coupled to the ufluctuations via Eq. (9). This leads 
to a two-dimensional reaction-diffusion equation 

1 
7, 

L(x) + - L(v) - k(x)]  P,(x, v, t )  (A51 

for the reactant distribution function P,(x, v, t ) .  The 
fraction of unreacted molecules Q ( t )  is then obtained 
from the reactant distribution function by integration 
over all x and v, 

Q ( t )  = Jm dx Jm dvP(x ,  v, t ) .  (A6) 
-m -m 

One can arrive at the simplified model treated in the 
present paper by certain approximations to the rigorous 
model presented above. The static disorder model, 
Eq. (13), is obtained by approximating the Q(t;  7’) 

in Eq. (A4) as a single exponential with a rate con- 
stant km(7’). A formal solution of Eq. (Al) yields 
the first line of (A7), while the second line of (A7) 
is obtained by assuming that integrating over the x- 
fluctuations yields approximately a single-exponential 
decay of Q(t) ,  the corresponding rate constant being 
given by Eq. (1): 

The validity of the approximation in the second half of 
(A7) was discussed above. 

The dynamic disorder model represented by Eq. (1 5) 
is obtained from (A5) by a formal solution of the latter, 
and then by using the assumption employed in the 
second line of Eq. (A7) for the integration over the x- 
fluctuations, with 7 replaced by ~ ~ ( v ) .  We then have: 

Q ( t ) = J m  -m dvJm -m dx 

We note that the approximation in Eq. (AS) is rigorous 
only in the case that the ufluctuations are much slower 
than the reactive transitions along the x-coordinate, 
i.e., that one can perform the integration over x in the 
first half of (AS) at fixed v and then integrate over v. The 
v-fluctuations are relatively slow when 7, % l/kET[~x(v)]. 
Since kET[~x(v) ]  is largest in the half-plane v<O, the 
main contribution to the reaction comes from that half- 
plane. Since 7,(v) in Eqs. (1 1)  and (12) is very small in 
that half-plane, we amve at k7,% 1 as a condition 
necessary for the approximation. This consideration 
agrees also with the observations of a numerical analy- 
sis of the more rigorous where we find that for 
ke7,= 1, i.e., in the single-exponential regime, the cor- 
rect rate constant can be overestimated by the model 
Eq. (1 5). However, for ke7”% 1 ,  i.e., in the nonexponen- 
tial regime, the results for the long-time behavior of the 
model treated in the present paper are very close to the 
results from (A5). We note that there are differences in 
the short-time behavior.37 

REFERENCES 
(1) (a)Kosower, E.M.; Huppert, D. Chem.Phys. Lett., 1983, 

9 6  433. (b) Huppert, D.; Kasety, H.; Kosower, E.M. 
Faraday Discuss. Chem. SOC., 1982,74 199. 

(2) Wang, Y.; McAuliffe, M.; Novak, F.; Eisenthal, KB. 
J. Phys. Chem., 1981,85: 3736. 

(3) Huppert, D.; Rand, S.D.; Rentzepis, P.M.; Barbara, P.F.; 
Struve, W.S.; Grabowski, Z.R. J .  Chem. Phys., 1981,75 
57 14. 

(4) (a) Weaver, M.J.; Gennet, M.J. Chem. Phys. Lett., 1985, 
113: 213. @) Gennet, T.; Milner, D.F.; Weaver, M.J. 
J. Phys. Chem., 1985,89 2781. 

(5) Harrer, W.; Gramp, G.; Jaenicke, W. Chem. Phys. Lett., 
1984,112: 263. 

(6) Hupp, J.T.; Weaver, M.J. J. Phys. Chem., 1985, 89: 
1601. 

(7) Zhang, X.; Leddy, J.; Bard, A.J. J. Am. Chem. SOC., 
1985,107: 3719. 

Israel Journal of Chemistry 30 1990 



77 

(8) McManis, G.E.; Golovin, M.N.; Weaver, M.J. J .  Phys. 

(9) McGuire, M.; McLendon, G. J .  Phys. Chem., 1986, 90: 

(10) Heitele, H.; Michel-Beyerle, M.E.; Finckh, P. Chem. 

(1 1) Su, S.-G.; Simon, J. J .  Chem. Phys., 1988,89: 908. 
(12) Burshtein, A.I.; Kofman, A.G. Chem. Phys., 1979, 4 0  

(13) Zusman, L.D. Chem. Phys., 1980,49: 295; Chem. Phys. 

(14) Alexandrov, I.V. Chem. Phys., 1980, 51: 449. 
(15) Ovchinnikova, M.Ya. Teor. Eksp. Khim., 1981,17: 651; 

Theor. Exp. Chem. (Engl. Transl.), 1982,17 507. 
(16) Helman, A.B. Chem. Phys., 1982, 65: 271. 
(17) van der Zwan, G.; Hynes, J.T. J. Chem. Phys., 1982,76: 

2993; 1983,78: 4174. 
(18) Calef, D.F.; Wolynes, P.G. J .  Phys. Chem., 1983, 87: 

3387; J .  Chem. Phys., 1983,78 470. 
(19) Hynes, J.T. J. Phys. Chem., 1986,90: 3701. 
(20) (a) Sumi, H.; Marcus, R.A. J .  Chem. Phys., 1986, 8 4  

4894. (b) Marcus, R.A.; Sumi, H. J .  Electroanal. Chem., 
1986,204 59. 

(21) Sumi, H.; Marcus, R.A. J .  Chem. Phys., 1986,84: 4272. 
(22) Nadler, W.; Marcus, R.A. J .  Chem. Phys., 1987, 8 6  

(23) Rips, I.; Jortner, J. Chem. Phys. Lett., 1987, 133: 41 1. 
(24) Rips, I.; Jortner, J. J .  Chem. Phys., 1987,87: 2090. 
(25) Rips, I.; Jortner, J. J .  Chem. Phys., 1987,87: 6513. 
(26) Rips, I.; Jortner, J. J .  Chem. Phys., 1988,88: 818. 
(27) Nadler, W.; Marcus, R.A. Chem. Phys. Lett., 1988,144: 

24. 
(28) By centering our interest on intramolecular processes, we 

avoid additional complications that arise from a distance 
dependence of the E T  a static distribution or a dynamic 
distribution (time-dependent due to diffusion processes) 
of distances between donors and acceptors would have to 
be taken into account, too. We note that this restriction 
entails that such an intramolecular ET system also should 
show a certain stiffness of the donor-acceptor complex so 
that effects due to variable distances do not compete with 
the effects treated in this paper. 

(29) Solvent relaxation time-dependent rate constants of the 
form Eq. (l), or its limiting form for k7 large, can be 
found readily in the literature, see Refs. 16, 20, and 25, 
and Refs. 14, 15, 18, and 24, respectively. They differ in 
what approximate expression is employed for the equili- 
brated rate (semiclassical, quantum-mechanical) and in 
how the parameter I is derived. We use here a result that 
was derived using a continuum model for the solvent 
fluctuations and neglecting the back reaction process (see 
Refs. 20 and 22 and the present Appendix). 

(30) Marcus, R.A.; Sutin, N. Biochim. Biophys. Acta, 1985, 
811: 265. 

(31) Onuchic, J.N.; Wolynes, P.G. J .  Phys. Chem., 1988,92: 
6495. 

Chem., 1986,90: 6563. 

2549. 

Phys. Lett., 1987, 138: 237. 

289. 

Lett., 1982,86: 547; Chem. Phys., 1983,80: 29. 

3906. 

(32) Ngai, K.L.; Wang, C.H.; Fytas, G.; Plazek, D.L.; Plazek, 
D.J. J .  Chem. Phys., 1987,86 4768. 

(33) Davidson, D.W.; Cole, R.H. J .  C h m .  Phys., 1950, 18: 
1417; 1951,19 1484. 

(34) BBttcher, C.J.F.; Bordewijk, P. Theory of Electric Polari- 
sation, Vol. 2, Chapter 9; Elsevier: Amsterdam, 1978. 

(35) Palmer, R.G. In Heidelberg Colloquium on Glassy Dy- 
namics; van Hemmen, J.L.; Morgenstern, I., Eds.; 
Springer: Berlin, 1987; pp. 275-286. 

(36) Blumen, A. In Molecular Dynamics and Relaxation 
Phenomena in Glasses, Lect. Notes in Phys. No. 277; 
Dorfmiiller, T.; Williams, G., Eds.; Springer: Berlin, 
1987; pp. 1-15. 

(37) Nadler, W.; Marcus, R.A.; unpublished. 
(38) Handbook of Mathematical Functions; Abramowitz, M.; 

Stegun, LA., Eds.; National Bureau of Standards: New 
York, 1972. 

(39) (a) Frauenfelder, H. In Structure and Motion. Mem- 
branes, Nucleic Acids and Proteins; Clementi, E.; Coron- 
giu, G.; Sarma, M.H.; Sarma, R.H., Eds.; Academic 
Press: New York, 1985; pp. 205-217. (b) Frauenfelder, 
H.; Ormos, P. In Biological and Artificial Intelligence 
Systems; Clementi, E.; Chin, S., Eds.; ESCOM Press: 
Leiden, 1988; pp. 15-22. 

(40) Brawer, S.A. J .  Chem. Phys., 1984,81: 954. 
(41) Barkatt, A.; Angell, C.A. J .  Chem. Phys., 1979,70: 901. 
(42) Andersen, J.E.; Ullmann, R. J .  Chem. Phys., 1967, 47: 

2178. 
(43) Miller, S.J.; Beitz, J.V.; Huddleston, R.K. J .  Am. Chem. 

SOC., 1984, 106: 5057. 
(44) Although Eq. (1 7) leads to the correct limiting value for 

k,r,-O, i.e., to the equilibrated rate k, there can be 
corrections from a more rigorous treatment according to 
the Appendix and Ref. 37. However, the qualitative 
conclusions drawn in the text remain valid. 

(45) A molecular treatment, rather than the continuum one 
we employed here for the solvent dynamics, may intro- 
duce additional effects; see, e.g., Wolynes, P.G. J .  Chem. 
Phys., 1987, 8 6  5133; Maroncelli, M.; Fleming, G.R. 
J .  Chem. Phys., 1987,86 6221. 

(46) There is both a practical and a theoretical problem with 
the quantity k,: in many cases there may be a short 
transient period, perhaps not readily measurable in a 
typical experiment, so that the observable k, is then 
defined by the value of dQldt after some transient time 
after t = 0. On the other hand, in the present paper and, 
implicitly, also in Refs. 10 and 23, it is assumed that the 
use of the approximation Eq. (1) takes care of this initial 
transient and describes the k, that is observable experi- 
mentally. The k, defined according to Eq. (1 8) in a more 
rigorous description of the ET process, as in the present 
Appendix, does differ from the k, of those approximate 
models and equals k, for both static and dynamic models, 
before any brief transient occurs. However, for a more 
reliable theoretical and experimental analysis of the 
short-time behavior of Q(t ) ,  a different approach than a 
k, defined according to Eq. (1 8) is needed.)’ 

Nadler and Marcus I Electron Tramfer and Dynamic Disorder 


