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Preface

About 110 researchers and students from all over the worlt froen July 20th to
July 22nd at the Forschungszentruiilich to participate in the international workshop
“From Computational Biophysics to Systems Biology (CBSB11The workshop was
dedicated to Harold Scheraga who celebrates his 90th bitindOctober 2011. Dr. Scher-
aga pioneered the use of computers in chemistry and bioldigywork inspired many of
the research areas that were the topic of this meeting,mgrigpm biophysics to systems
biology. In the spirit of Harold Scheraga’s work, we have ailhrat bringing together
researchers from physics, chemistry, biology, and conm@gience to acquaint each other
with current trends in computational biophysics and systbiology, to explore avenues of
cooperation, and to establish together a detailed undhelisig.of cells at a molecular level.

CBSB11 was the fifth in a series of successful workshops heteg 2006 in both Germany
and the USA, and was organized jointly by the Forschungszentlilich, the German

Research School for Simulation Sciences, and Michigan A@olical University. As

in the previous year, the participants explored a wide raoigéopics ranging from

single macromolecules to the working of entire cells in stifie presentations (including
five “CBSB11 Outstanding Young Researcher Award” talks bleced students and
postdocs), in panel sessions, and in numerous informalsksans. This proceeding
volume collects selected presentations from the three lbengsworkshop that we hope
will serve as starting point for further discussions.

We are indebted to Bettina Scheid, Elke Bielitza and Helgmkifor their most valuable
help with local arrangements. Martina Kamps helped not amith organizing the

workshop, but also maintained the webpage and helped witmgdhese proceedings.
We also wish to thank IBM for support.

Julich, September 2011

Paolo Carloni
Ulrich Hansmann
Thomas Lippert
Jan Meinke
Sandipan Mohanty
Walter Nadler
Olav Zimmermann
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A Tribute to the First 90 Years of Harold A. Scheraga

Jeffrey Skolnick

Center for the Study of Systems Biology, School of Biology, Georgittirie of Technology
250 14th Street, N.W., Atlanta, GA 30318, USA
E-mail: skolnick@gatech.edu

Harold A Scheraga was born on October 18, 1921 to a workirgg¢kamily in Brook-
lyn, New York. He then spent the early part of his childhooavianticello, NY, before
returning to Brooklyn in 1930. Typical of many in those dagsring the Depression,
he almost dropped out of public school to help support hisilfanBut, fortunately for
the scientific world, due to the influence of his father, heagmad in school. Harold has
always had a keen interest in the humanities. For examplepior High School, he exten-
sively studied Latin, where he was award the Latin Medal @ugation. He then attended
the prestigious Boys High School, where he also developeaksign for math and was a
member of the math team; yet, during this time, his love ofrLand the classics increased.
Indeed, on entering the City College of New York, he was t@twieen the arts and math.
Ultimately, he decided that chemistry was to be his field ofigtand took courses in
both math and physics to prepare himself for a career in payshemistry. Tellingly, he
avoided Biochemistry, because “I didn't think it was a riges scientific discipline. I've
since done a 180phase shift on that one.”

In 1941, Harold Scheraga went on to graduate school in ctemas Duke Univer-
sity, where he studied the Kerr effect in small moleculesanride direction of Paul Gross.
On completion of his PhD, he was awarded a prestigious AC#dBctwral Fellowship
in 1946-47 that enabled him to work with John Edsall at Hat\wdedical School. There
he worked on fibronectin and tried to determine its size arghshusing dielectric disper-
sion and flow birefringence. This marked the beginning oflifédong interest in protein
biophysics.

In 1947, he was appointed as a Chemistry Instructor at ClodmaVversity by Peter
Debye and quickly worked his way up the ranks, becoming afroliessor in 1958 and the
chair of the Cornell Chemistry Department from 1960-196Was under his chairmanship
that the Cornell Chemistry Department underwent a periochpid growth. In 1965, he
was appointed the Todd Professor of Chemistry, a positiohehe until 1992, when he
became the Todd Professor Emeritus, and to this day, hencesstito direct a vigorous
research program.

In a rarely equaled, scientific career spanning over 65 y&arsScheraga has been
and remains one of the world’s leading protein biophysit&maists. In a unique combi-
nation of experiment and theory, he has made an exceptjoiaatje number of original
and pioneering contributions to the development and agipdic of physical and chem-
ical methods to polypeptides and proteins. Dr. Scheragatiasery first person that
conceived of applying the fundamental principles of phgisahemistry to the problem of
protein structure prediction. As the author of over 127@isiific articles, he has intro-
duced almost all of the key ideas that have led to the undetistg of protein stability, the



mechanism of protein folding and the prediction of protdimcture. Indeed, four of his
papers are citation classics.

Among his major scientific contributions are the followinde developed a method to
interpret the hydrodynamic properties of proteins. He tged a theory of the hydropho-
bic effect. He engaged in a pioneering analysis of phasssitrans in one dimension,
and in related work, studied the helix-coil transition imf@ and copolymers of amino
acids. He then applied the host-guest technique to deterthmintrinsic helix-forming
tendencies of the naturally occurring amino acids with rficaliions to include the role of
specific side chain-side chain and side chain-backboneattiens. He engaged in an in-
genious series of chemical and physical experiments torobtiaicturally relevant distance
constraints in ribonuclease. These were subsequentlijegehly the crystal structure of
ribonuclease. Not merely interested in ribonucleasetgatgrstructure, he wondered how
it folds to its native state; thus, he determined the foldaghways of ribonucleasd.
He also worked or-hairpin-forming peptides as models of early stages ofginafold-
ing. Following up on his postdoctoral work on fibronectin,dlecidated the mechanism
of the thrombin-induced conversion of fibrinogen to fibricliding the identification of
the molecular basis of a bleeding disorder. He performeditstecalculations of the struc-
tures of enyzme-substrate complexes. Moreover, he is otfeedbunders of the field of
conformational energy calculations. In that regard, heetimed the ECEPP force field
for proteins and is the author of numerous highly creatig®iahms for the solution of
the multiple-minima problem for oligopeptides, fibroustgins, and globular proteins. In-
deed, his diffusion-equation and distance-scaling metlvdglobal optimization spawned
an entire field of energy surface deformations. He subselyuspplied these approaches
to compute crystal structures solely from the potentiakfiom with no input of space-
group information. This was the first time such first prineiphlculations were successful.
He was also the first to introduce statistical potentialsufee in protein structure predic-
tion. Focusing on fundamental physical principles, he idhted the fundamental statis-
tical mechanical origins of cooperativity in protein faldgi and he assessed the accuracy
of protein structures by applying quantum mechanics to tieutation of'>C* chemi-
cal shifts. Most recently, he has pioneered the developwieatreduced protein model,
UNRES, that has enabled the first principle simulation ofithéing pathway of a number
of important proteins that represents significant progi@sards the solution of the protein
folding problem.

In recognition of his outstanding science, he has receivedenous honors throughout
his career. He was a Guggenheim Fellow and Fulbright Res&aricolar at the Carlsberg
Lab, Copenhagen, Denmark, 1956-57 and at the Weizmantuhesitn 1963. He was an
NIH Health Special Fellow at the Weizmann Institute in 1981@d an NIH Fogarty Scholar
in 1984, 1986, 1988, 1989, 1990, and 1991. In 1957, he retéiecACS Eli Lilly Award
in Biochemistry. He was awarded a Sc.D. (Hon.) from Duke ©&rsity in 1961 and the
University of Rochester in 1988. He was elected a Fellow efAmerican Association for
the Advancement of Science in 1966, a Member of the Nationatlémy of Sciences, U.S.
in 1966 and a Member of the American Academy of Arts and Seiemt 1967. In 1978,
he received the ACS Kendall Award in Colloid or Surface Chatrgj and in 1983, he was
awarded the Linderstrgm-Lang Medal of Carlsberg Laboyathr 1990, he received the
ACS Mobil Award in Polymer Chemistry and the ACS Repligen Aavéor Chemistry of
Biological Processes. He was also awarded a Doctor Saientielonoris Causa from the



Technion, Israel Institute of Technology in 1993. In 199&r&ceived the Stein and Moore
Award of the Protein Society, and in 1997, he was honored byAiS IBM Award for
Computers in Chemical and Pharmaceutical Research. In, 2@0®as awarded the ACS
Murray Goodman Award and was elected a Fellow of the Ameri¢laemical Society.

Harold Scheraga has also had a highly significant impact es¢rentific community
in his role as mentor of over 300 graduate students and pastddfellows. Many of these
students have gone on to outstanding careers in academiadargdry. His dedication to
mentoring the next generations of scientists is also refteut his choice of speakers at
his humerous awards symposia honoring his accomplishmefgslways selects young
people who are at the cutting edge of their science.

At the young age of 90, Harold Scheraga maintains a vigoraasipn for cutting edge
science. Indeed, his NIH grant, which is in its‘6%ear, was renewed with the highest
priority score. Harold is well known for often asking the moslevant, incisive question
at a seminar and for pointing out that he did the first work angltoblem, perhaps some
40 years earlier. What is even more remarkable is that he ffahgeaop of his head, give
you the exact citation of that work! This is a non-trivial kasonsidering the number of
papers he has published and continues to publish.

The scientific community is very fortunate to have Haroldas of its senior members.
He sets a high standard not only in his world-class scientealso in his world-class
ethical behavior. As shown by the diverse collection of pafie this volume, his science
has played a seminal role that has spread across many fieldsledy, and we all look
forward to his many future contributions in the years to come






Adventures in Protein Biophysics

Harold A. Scheraga

Baker Laboratory of Chemistry, Cornell University, Ithaca, NY 138301, USA
E-mail: hasS5@cornell.edu

Highlights of 65 years in Protein Biophysics are presenfite science evolved along exper-
imental and theoretical pathways from early hydrodynamiatinents of protein solutions to

all-atom, and then coarse-grained, molecular mechanics diongeof protein structure and

thermodynamics of folding pathways. Finally, applicatiors@ow being made to treat several
biological systems.

1 Introduction

This is a summary of some of my 65 years in Protein Biophysigeng which | have had
the good fortune to establish friendships with wonderfudgde: my students and many
others throughout the world including several people pirdiing in this symposium. The
following table is a basic description of my dual experinaaind theoretical approach to
determine protein structure and reactivity.

Dual Biophysics Approach to Determine
Protein Structure and Reactivity

Experimental

Hydrodynamic properties to de-
termine size and shape of ellip-
soidal models

Mechanism  of  thrombin-
induced conversion of fibrino-
gen to fibrin (hydrogen-bonding
in protein-protein association)

Use of random copolymers to
determine helix-coil propensity
(Host-Guest technique), and
failure of this technique to
account for phase transitions in
proteins

Theoretical

Hydrodynamic theory to deter-
mine rotational diffusion coeffi-
cients of ellipsoidal molecules

Generalized treatment of hydro-
dynamic properties of proteins

Pauling a« and § structures
based on backbone hydrogen-
bonding

Helix-coil transition theory for
polyamino acids and nucleic
acids



Theory of effect of hydrogen-
bonds on pK's of polar side
chains and on limited proteoly-
Sis

Similar theory for nonpolar
side chains  (hydrophobic
interaction)

Structure of proteins, making
use of side-chain distance con-
straints (Tyr. .. Asp)

|

Mechanism of oxidative fold-
ing of RNase A and onconase
(Determination of folding path-

Formulation of molecular me-
chanics treatment to compute
protein structure

|

Evolved into ECEPP and UN-
RES structure determination
(CASP)

ways)
|

Later treatment of thermody-
namics and dynamics

|

Protein — Protein Interactions
(Biological properties)

|

Mean-square fluctuations in na-
tive proteins, and energy land-
scapes (PCA)

New venture in exploiting use of
1BCe chemical shifts

2 Hydrodynamic Properties

In 1946, other than that a protein contained peptide-boricétl amino acids, essentially
the only structural property of a protein that could be dateed was its size and shape
using hydrodynamic methods. My first experimental expegewith proteins as a post-
doc in the Department of Physical Chemistry at Harvard Mad®&chool involved flow
birefringence to determine the dimensions of an ellipdaidadel for a particular protein
then-known as cold-insoluble globutinThis was followed by theoretical work to obtain
this information from rotational diffusion coefficients eflipsoidal molecules from flow
birefringencé, and subsequently, from non-Newtonian viscoseyperiments. Later, be-



ginning at Cornell in 1947, a general treatment of a varidthiyalrodynamic properties
was formulatetiwith Leo Mandelkern.

3 Thrombin-induced Conversion of Fibrinogen to Fibrin

Simultaneously with flow-birefringence studies of fibrieog and detergent micellés

a long-time experimental study was initiated with my firshdwmate student, Michael
Laskowski, Jr., to determine the mechanism of the intevaaif thrombin with fibrinogen

to produce the fibrin clét®. The following reversible three-step mechanism was eluci-
dated:

Fr&pirf @)
mf, < fibrin clot 3)

in which F' is the asymmetrical rod-like molecule, fibrinogéhis the proteolytic enzyme
thrombin, P is small peptide material liberated by hydrolysis of a sfie@rgl16-Gly17
peptide bond by thrombin to expose buried polymerizatitesson F', producing fibrin
monomer.f, in step 1.

In step 2, this exposed polymerization site Brinteracts with a pre-existing site dn
to produce a distribution of oligomeric intermediate olagping rod-like polymers?®, f,,.
This polymerization is facilitated by formation of intertaoular hydrogen bond<®.

Finally, in step 3, these rod-like intermediate polymemsrf@ cross-linked gel whose
characteristics were described by Ferry and MorriSorsubsequent transferred nuclear
Overhauser effect (NOE) NMR experiments identified thecstme of the initial comple}
betweenI’ and F’, as shown by Fig. 7 in Ref. 12. In a genetic mutation in somepes,
the nearby Gly12 is replaced by valine, altering the conédgiom of F' near the active-site
Arg16-Gly17 bond, preventing the hydrolysis of this peptind and thereby avoiding the
formation of f or the fibrin clot, leading to a bleeding disorder. With a sf@nred NOE
NMR experiment with this mutant fibrinogen, the molecularchremism of this bleeding
disorder was elucidaté#i

4  Helix-coil Transitions

In the early 1950'’s, Pauling proposed telix and parallel and anti-parallglsheets as
structural elements of proteins. This started extensivesitigations in many labs including
ours with a new graduate student, Douglas Poland, of th&-bell transition. Our goal
was to determine the helix-forming propensity of the 20 ralty-occurring amino-acid
residues. While it would have been desirable to obtain tHirination from equilibrium
studies of the helix-coil transition in homopolymers of lea the 20 amino acids in water,
most of them are insoluble in this solvent. Therefore, sgtitthost-guest random copoly-
mers, with a water-soluble host doped, respectively, vattheof the 20 amino acids singly
as a guest, was usédand an equilibrium theory was developedf for helix-coil transi-
tions in random copolymers. The helix propensity was exg@ésn terms of the Zimm-
Bragg equilibrium constants, for breaking a hydrogen bond at the end of théelix,
and s was determined over the temperature range °fd060°C for all 20 amino-acid



residue$’- 18 Suchs-values are useful for identifying initial formation of hedl struc-
tures in protein-folding studié$?°. At the same time, a theory was developed to treat the
kinetics of the helix-coil transition in polyamino acfds

A large focus was placed on helix-coil transitions becatiseas widely believed that
this process could ultimately provide an understandingofgin folding. However, it was
later realized that such a concept was incorrect becausetrest-neighbor Ising model,
used to treat the helix-coil transition, did not include pheper balance between short- and
long-range interactions that governs cooperative foldihgroteing.

5 Hydrogen Bonding between Side Chains

Pauling’s proposal ofv and g structures focused on NH OC hydrogen bonds in the
backbone of the polypeptide chain. Stimulated by the ifieation of hydrogen bonds
between side chains in the polymerization of fibrin mondm&ra theory was developed
with Michael Laskowski, Jr. for the effect of such hydrogembing of polar side chains
on pK’s of ionizable groupS and on limited proteolys?é. Correspondingly, theory was
proposed with George &inethy for the mechanism of hydrophobic interactions wingj
nonpolar side chairg, and for the interaction of nonpolar residues with the ndapgor-
tions of polar amino acids to strengthen hydrogen bonds inwihe polar side chains are
involvecf8; the latter enhanced our understanding of the contribstiafrsuch hydrogen
bonds to protein stability.

6 Hydrogen-bond Distance Constraints to Determine Protein
Structure

With the ability to identify side chain-side chain hydrogeonds between polar residues
by their effect on pK'$, attempts were made to identify such hydrogen-bond distanc
constraints in a protein to facilitate determination oftlisee-dimensional structure. Us-
ing bovine pancreatic ribonuclease A (RNase A) as an exantiptee such hydrogen
bonds were identified in RNase?A viz., Tyr 25--Asp 14, Tyr 92...Asp 38, and
Tyr 97...Asp 83, before the crystal structure had been détexd. This pairing of 3 out
of 6 tyrosine residues with 3 out of 11 carboxyl groups repnés one out of more than
19,000 possible combinations. When the crystal structufeNdise A was subsequently
determined, these three pairs were found. These threadéstanstraints, plus the known
location of four disulfide bonds in RNase A encouraged usawd & develop a theoretical
approach with George &ethy, using distance constraftailtimately with inclusion of
empirical potentiaf®, to compute the three-dimensional structure of a protein.

7 Experimental Studies of Protein-folding Pathways

The experimental work on identifying hydrogen bonds in R\NA% was accompanied by
an experimental approach to identify the pathways from tifelded form of this protein
(with its disulfide bonds reduced) to the oxidatively-falderotein to form its four native
disulfide bonds. These oxidative-folding experiments wengied out on RNase A, first,



with oxidized-and-reduced glutathioféout, later, to simplify the number of folding inter-
mediates, with oxidized and reduced dithiothrétéf. Two pathways, in which the rate-
determining step involved SH/S-S interchange to form theatdisulfide-bonded species
des-[65-72] and des-[40-95], were identifiedTwo other pathways, in which these two
disulfide-bonded species are formed by oxidation from the dvgulfide ensemble, rather
than by SH/S-S interchange, were also identified In the initial folding stage, the one-
disulfide ensemble is dominated by formation of the 65-78ltide bond®.

A ribonuclease homolog, onconase (ONC), also has fourfdlsubonds and a three-
dimensional structure similar to that of RNase A. Three efdfsulfide bonds of ONC and
RNase A are in homologous positions, but the fourth one ingeiMg between Cys 65 and
Cys 72, which is the first disulfide bond to form in the foldinatipways, is in a different,
non-homologous, position in ONC. This motivated an analsgstudy of the oxidative
folding of ONC®® with dithiothreitol, which indeed led to different foldingathways than
those observed in RNase A. Thus, these two homologous psofielid by very different
pathways.

8 Formulation of Molecular Mechanics to Compute Protein
Structure

With the distance constraints mentioned in section 6, aratd&phere potential, and con-
straints of the Ramachandran diagfdnmethodology was formulaté#ito compute and
assess the accessibility of various folded states of RNa$ei8 methodology evolved into
use of a detailed empirical potential energy function, EBEPmpirical Conformational
Energy Program for Peptide&8)

Several small model peptides were investigated to denatesthe validity of the
molecular mechanics procedure, with various global ogtitidn proceduréd, to sur-
mount the many local minima in the conformational space adiyce structures that
agreed with experimental data. These include the pentaeapethionine enkephalin, the
cyclic decapeptide gramicidin S, a polytripeptide modetollagen, and the 46-residue
protein A.

Protein A was the largest protein that could be treated whighavailable computing
power®. To be able to compute structures of larger proteins thateprd\, a united-
residue (UNRES) coarse-grained mdfetas developed by Adam Liwo by eliminating
unnecessary degrees of freedom to limit the conformatispeate that has to be examined.

UNRES evolved from an initial dependence on the protein daték for parameteriza-
tion to a more physics-based one parameterizeaoinitio quantum mechanical calcula-
tions and computations of potentials of mean fé?céts initial success with single-chain
proteins in CASP involved the computation of the structurthe protein HDEA?. With
such success in computing structure, attention was tuoéngtuse of UNRES in a molec-
ular dynamics treatment of folding pathways of single-ohaiioteing?=*4to be able to
extend the computational folding time-scale beyond theiov@ved with all-atom poten-
tials. An extension of UNRES to multiple-chain proteins wasried out subsequentfy



9 Thermodynamics and Dynamics

To correct for the focus on energy instead of free energy, UN&KES force field was
modified to include its temperature dependéficand thereby treat entropic effects to
compute thermodynamic properties. In order to extend UNREProteins containing
as many as 500 residues, massive parallelization of the fiietd was carried ofif. At
the same time, attention began to be focused on dynamicaldliens, initially of native
proteing® 4,

10 Biological Processes

With the increasing maturity of UNRES, this force field waplgd to treat large bio-
logical protein-protein complexes. The initial focus wastbe aggregation of A° and
PICK 152,

11 Use oft3C® Chemical Shifts

With Jorge Vila, we have recently initiated the computation application of NMR3C
chemical shifts to determine and validate protein stresturQuantum chemical calcula-
tions were carried out for any residue Xxx in a protein witk tise of an ECEPP-rigid-
geometry model peptide Ac-Gly-Xxx-Gly-NMe. The factorsattaffect the DFT-based
computation of'3C'® chemical shifts were establisti&d4 and it was shown that com-
plete protein structures solved by X-ray crystallographgt AMR spectroscopy could be
validated accurate¥—>’. In addition, the fractions of the tautomeric forms of thédazole
ring of histidine in proteins could be determined as a furctf pH®. As a result, a purely
physics-based serveZheShift>®, was developed to enable the NMR community to predict
of 13Ce chemical shifts with reasonable accuracy in seconds; thisprovides a standard
with which to evaluate the quality of any reported proteiucture solved by either X-ray
crystallography or NMR spectroscopy, provided that theegxpentally-observed?C
chemical shifts are available.

12 Conclusions

Methodology has been developed to compute protein strietod folding pathways, to-
gether with the thermodynamic and dynamic properties didtding. Current focus is be-
ing placed on the improvement of UNRES and its applicatidoidétogical protein-protein

complexes, e.g., chaperones. More extensive details avédpd in a recently-published
chapter in Annual Review of Biophysi%s
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The cellulase enzyme Cel7A is a promising candidate to hydeatgllulose efficiently. One of
the major research questions is to understand the mecharocalgs how the cellulase enzyme
accesses the cellulose fiber. To guarantee, with the prdsgntomputer power, statistically
unbiased results a systematic multilevel simulation strateggquired. In the first step multiple
Brownian dynamics simulations>( 3.2 ms) are used to study the global cellulose-cellulase
interactions, which occur on the microsecond timescale. fine@ur results, in the second
step multiple Molecular Dynamic simulations (1 s) are used to study the local interactions,
which occur on the ns timescale. We utilized different metHid@sdensity maps and MSM for
the analysis. Our study could extend and quantify the marstiegiexperimental results.

1 Introduction

Cellulose holds great potential as a carbon-neutral relnleveaurce of biofuel energy, itis
the most abundant bioresource produced in the biosphet®( billion dry tons/ yeary=.
Cellulose forms the cell walls of plants and gives them itgidCellulose chains are linear
polymers consisting of glucose units joined togethemskfl,4)-glycosidic bonds. These
single cellulose chains are packed and bundled into orderasis to form cellulose fibers.
They are held together by van der Waals forces and hydrogaasbd he glucose units can
be unlocked and fermented to produce ethanol. The halfdifeHfe 5— glucosidic bond
cleavage aR5°C is 5-8 million years, which makes the cellulose moleculey\stable.
Therefore the fermentation process is diffi¢ult

Cellulase enzymes are capable of breaking up the sugarsch@ipromising candidate is
the cellulase enzyme Cellobiohydrolase (CBH) |, refer@tig¢re as Cel7A It is an in-
dustrial important cellulase secreted in high yields byfilaenentous fungu3richoderma
reesef. It consists of two parts, the carbohydrate binding modGBNI) and the catalytic
domain (CD) which are held together by a highly O-glycossdalinker peptide (Fig. 1
top). Cel7A is a processive exocellulase, which prefers/tvdlyze cellulose chains from
the reducing to the non-reducing érid The CD has ars0 A long tunnel-shaped active
site, which can bind and hydrolyze a single cellulose chiirexperiments it is observed
that the removal of the CBM reduces the CD activity. The stushowed that after the
removal of the CBM, Cel7A almost completely lost its abilttybind to cellulose. This
implies that the CBM could enhance the cellulase activityrizyeasing the local enzyme
concentration on the cellulose surf&té&’. The three Tyr residues Y5, Y31 and Y32 form
a flat hydrophobic patch on the surface of the CBM, which nedchsimilar hydrophobic
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Figure 1. (Top) Visualization of the Cel7A CBM, the resids Y13, Y31 and Y32 are highlighted. (Bottom)
Cel7A CBM together with the cellulose fiber, the largest disien of the cellulose fiber is oriented parallel to
the x-axis of the coordinate system.

surface of the cellulose fiber surface. These three resighagsplay an important role in
the docking of the CBM to the microfibrils by aligning theings relative to the sugar
monomers. Studié$®suggest that the fourth Tyr residue Y13 can move from itgiate
position to the cellulose surface to form hydrophobic iatéions with the cellulose sur-
face. Cellulases are relatively costly enzyfitekigh enzyme loads are currently needed to
realize reasonable yielts!6, To achieve higher conversion yields a better understandin
of the mechanism how the enzyme degenerates the celluloapastant. On the different
fiber faces different atoms are pointing out, which lead ffedént hydrophobicity for the
different fiber faces.

To sample the relevant cellulose-cellulase interactioitls the present day computer
power we choose a multilevel sampling strategy. In the fiegh sve performed multiple
Brownian dynamic (BD) simulations, resulting in a simubatitime > 3.2ms, to study
the global CBM fiber interactions. We constructed for the CBIMr interactions a den-
sity map as well as a Markov state model (MSKt§!to identify the fiber “hotspots” with
favorable CBM interactions. To refine the results we perfxrim the second step Molec-
ular dynamics (MD) simulations for the “hotspot” conforneets, leading to a combined
simulation time of> 1 us.
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2 Material and Methods

The CBM has a size of 29 Ax ~ 17 Ax =~ 24 A. It consists of 36 amino acid residues
with sequence TQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL.&lglosel 5
fiber model with a length of 206 A and a diameter of 40 A was chosen (Fig. 1 bottom).
The model consists of 36 individual chains, each chain etmsif40 glucose units. Based
on the ordering of the chains in the end-view eight diffeffdrgr faces are visible, which
have different physical properties. The fiber fa¢eés0, 0) and (—1,0,0) are the most
hydrophobic ones an@, 1, 0) and(0, —1, 0) are the least hydrophobic faces (here referred
to as hydrophilic).

In the MD simulations the CBM-fiber system has a size-0210000 atoms. For the
BD simulations the translationd),,..,, and rotationalD,.,; diffusion coefficients were
determined from the MD simulations and additionally vedfley inputting the structures
to the hydrodynamics program HYDROPROPrior to analysis the BD trajectories are
transformed into a reference system in which the celluldser fnas no translational or
rotational motion, this reduces the number of degrees efdfven of the system from 12
to 6. The coordinate system is chosen such, that the longestdimension is parallel
to the x axis. An infinitely long fiber is homogeneous along ttexis, the CBM cannot
distinguish between different positions along the x axisréfore the x axis was projected
out. To avoid end effects, only simulation frames are usedhith the center of the CBM
has a distance af > 30 A from the fiber ends. The analysis were performed using GNU
R?3.

=019 Y13

=) p Prns

1 05 0 05 1

density
O N B N oo

Figure 2. Orientation of the Y13 residue of the Cel7A CBM. Tioemalized vectopr,,,- 1 points from theC”
to theC'¢ atom of the Tyr ring.
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3 Results and Discussion

To sample the relevant cellulose-cellulase interactioasuged a two step protocol. We
utilized BD simulations for the global and MD simulations the local CBM-fiber interac-
tions. The simulations give new insights on an atomic levigh & ps time resolution. This
detailed spatial and time resolution are in general notssibke via experiments.The elec-
tron microscop¥?, the single molecule fluorescereéand the atomic force microscofly
studies found that the CBM prefers to bind to the hydrophéduies of cellulosda. The
BD and MD simulations support and extend this observatiogibiyng additional quanti-
tative insights. Here we focus on the orientation of the CBy residues. For all fiber
faces the residues Y31 is pointing towards the reducing aeddY82 is pointing towards
the nonreducing end. The residue Y13 is pointing towardsitheeducing end (Fig. 2).
The CBM tries by aligning the Tyr residues to expand the hgbabic surface.

Acknowledgments
For computational resources we acknowledge the bwGRID
(http://www.bw-grid.de ), member of the German D-Grid initiative, funded

by the Ministry for Education and Research (Bundesministerfur Bildung und
Forschung) and the Ministry for Science, Research and AdsleB-Wuerttemberg
(Ministerium fur Wissenschaft, Forschung und Kunst Badetirifémberg). The National
Science Foundation through TeraGrid resources provideNIB under grant number
TG-MCAO08X032. The National Energy Research Scientific Cotimg Center, which is
supported by the Office of Science of the U.S. Department ef@nunder Contract No.
DE-AC02-05CH11231.

References

1. MT Holtzapple,Cellulose In, Macrae R, Robinson RK, Saddler MJ, editorscyEn
clopedia of food science food technology and nutritioondon: Academic Pres$6,
758-767, 1993.

. M. Jarvis Cellulose stacks yiNature 426, no. 6967, 611-612, 2003.

3. Yi-Heng Percival Zhang and Lee R Lynthward an aggregated understanding of en-
zymatic hydrolysis of cellulose: nhoncomplexed cellulgséesns.Biotechnol Bioeng,
88, no. 7, 797-824, Dec 2004.

4. M.E. Himmel, S.V. Ding, D.K. Johnson, W.S. Adney, M.R. Nas, J.W. Brady, and
T.D. Foust,Biomass recalcitrance: engineering plants and enzymebi@duels pro-
duction Science315 no. 5813, 804, 2007.

5. L. Zhong, J.F. Matthews, M.F. Crowley, T. Rignall, C. daJ J.M. Cleary, R.C.
Walker, G. Chukkapalli, C. McCabe, M.R. Nimlos, et dhteractions of the com-
plete cellobiohydrolase | from Trichodera reesei with ro@ystalline celluloseg,
Cellulose,15, no. 2, 261-273, 2008, Cellulose potential energy is storéd C-H
and C-C bonds.

N

18



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. M. J. Harrison, A. S. Nouwens, D. R. Jardine, N. E. Zach#&aA. Gooley,
H. Nevalainen, and N. H. Packéiodified glycosylation of cellobiohydrolase | from
a high cellulase-producing mutant strain of Trichodermagei, Eur J Biochem256,
no. 1, 119-127, Aug 1998.

. Maria Vrsansk and Peter BielyThe cellobiohydrolase | from Trichoderma reesei
QM 9414: action on cello-oligosaccharideSarbohydrate Research?7, 19 — 27,
1992.

. Tuula T. Teeri,Crystalline cellulose degradation: new insight into thedtion of
cellobiohydrolasesTrends in Biotechnologyi5, no. 5, 160 — 167, 1997, Reference
for exo- and endcellulase.

. AV Gusakov, AP Sinitsyn, AV Markov, AA Skomarovsky, OA 88yna, AG Berlin,

and NV Ankudimova/ndigo-binding domains in cellulase molecul®ocatalysis-

2000: fundamentals and applicatiod4, no. 6, 77-80, 2000.

J. Knowles, P. Lehtovaara, and T. Te@gllulase families and their genetrends in

Biotechnologyb, no. 9, 255-261, 1987.

T.T. Teeri, T. Reinikainen, L. Ruohonen, T.A. Jones, &kC. Knowles,Domain

function in Trichoderma reesei cellobiohydrolasdsurnal of Biotechnology4, no.

2,169-176, 1992.

Lintao Bu, Gregg T Beckham, Michael F Crowley, Christephl Chang, James F

Matthews, Yannick J Bomble, William S Adney, Michael E Himimand Mark R

Nimlos, The energy landscape for the interaction of the family 1 oasturate-

binding module and the cellulose surface is altered by Hydesl glycosidic bonds.

J Phys Chem B113 no. 31, 10994-11002, Aug 2009.

M.R. Nimlos, J.F. Matthews, M.F. Crowley, R.C. Walker,@hukkapalli, J.W. Brady,

W.S. Adney, J.M. Cleary, L. Zhong, and M.E. HimmRlplecular modeling suggests

induced fit of Family | carbohydrate-binding modules withraken-chain cellulose

surface Protein Engineering Design and Selecti2f, no. 4, 179, 2007.

Y.H. Percival Zhang, M.E. Himmel, and J.R. Miele@tlook for cellulase improve-

ment: screening and selection strategiBsotechnology Advance£4, no. 5, 452—

481, 2006.

M.E. Himmel, M.F. Ruth, and C.E. Wyma@ellulase for commodity products from

cellulosic biomassCurrent opinion in biotechnolog$0, no. 4, 358—-364, 1999.

R. Wooley, M. Ruth, D. Glassner, and J. SheelRmgcess design and costing of

bioethanol technology: a tool for determining the statusl airection of research

and developmenBiotechnology Progres4p, no. 5, 794-803, 1999.

P. BremaudMarkov chains: Gibbs fields, Monte Carlo simulation and cesu

Springer, 1999.

Nina Singhal, Christopher D. Snow, and Vijay S. Parldeing path sampling to

build better Markovian state models: Predicting the folglrate and mechanism of a

tryptophan zipper beta hairpjrirhe Journal of Chemical Physick21, no. 1, 415-

425, 2004.

Nina Singhal and Vijay S. Pandgrror analysis and efficient sampling in Markovian

state models for molecular dynamidhe Journal of Chemical Physick23 no. 20,

204909, 2005.

19



20.

21.

22.

23.

24,

25.

26.

N.S. Hinrichs and V.S. Pand€alculation of the distribution of eigenvalues and
eigenvectors in Markovian state models for molecular dyingnirhe Journal of
Chemical Physicsl 26, 244101, 2007.

S.P. Elmer, S. Park, and V.S. PanB@damer dynamics expressed via Markov state
models. I. Explicit solvent molecular-dynamics simulagion acetonitrile, chloro-
form, methanol, and watemhe Journal of Chemical Physicd®3 114902, 2005.

J. Garta de la Torre, M.L. Huertas, and B. Carras@alculation of hydrodynamic
properties of globular proteins from their atomic-levaistture, Biophysical journal,
78, no. 2, 719-730, 2000.

R Development Core TearR: A Language and Environment for Statistical Com-
puting R Foundation for Statistical Computing, Vienna, Austr2010, ISBN
3-900051-07-0.

Janne Lehdi, Junji Sugiyama, Malin Gustavsson, Linda Fransson, Matkoder,
and Tuula T. TeeriThe binding specificity and affinity determinants of familgntl
family 3 cellulose binding moduleBroceedings of the National Academy of Sciences
of the United States of Americap0, no. 2, 484-489, 2003.

D.J. Dagel, Y.S. Liu, L. Zhong, Y. Luo, M.E. Himmel, Q. X¥, Zeng, S.Y. Ding,
and S. Smith|n Situ Imaging of Single Carbohydrate-Binding Modules ail@ose
Microfibrils, The Journal of Physical Chemistry B15 635-641, 2010.

Y.S. Liu, J.O. Baker, Y. Zeng, M.E. Himmel, T. Haas, an¥. Ring, Cellobiohy-
drolase hydrolyzes crystalline cellulose on hydrophobie§ Journal of Biological
Chemistry,286, no. 13, 11195, 2011.

20



Effects of Confinement on the Thermodynamics
of a Model Protein

Mustafa Bilsel', Buket Tasdizent, Handan Arkin 12, and Wolfhard Janke?

! Department of Physics Engineering, Faculty of Engineering, Ankaiagusity
Tanddjan, Ankara, Turkey
2 Institut fur Theoretische Physik, UniverattLeipzig, Postfach 100 920, 04009 Leipzig, Germany
E-mail: Handan.Arkin@itp.uni-leipzig.de

We report the results of computer simulations of a model praieiriined in a cage like a sphere
to investigate the dynamics of the folding mechanism. The probdf whether proteins are
misfolded or aggregated or on the contrary are folded prgpeske promptly in these confining
media is of great interest in our study. Therefore our aim sntalyze the thermodynamics of
the folding mechanism and also to investigate whether thdirfglmechanism is controlled
or not in the confining media. To do so we have employed exhaustiviticanonical Monte

Carlo simulations by using a minimalistic AB model approach. Aaded understanding of
this subject plays a key role for finding treatments to diseaaesed by misfolding of proteins.

1 Introduction

Protein folding is one of the most intensively studied ariltl hsolved problems in biol-
ogy. The process by which a protein folds into its biolodicakttive state cannot be traced
in all details solely by experiments. Therefore, many te&oal and experimental studies
focus on determination of the three-dimensional structidirdhiese molecules. Recently,
molecular modelling has attracted considerable atterfitioapplications in designing and
fabrication of nanostructures leading to the developmeatisanced materials. In a newly
growing field of research, synthetic peptides are invewijfor their use in nano-devices,
by exploiting their self-assembly propertie’s The self-assembly of biomolecular building
blocks plays an increasingly important role in the discgwdrnew materials, with a wide
range of applications in nanotechnology and medical teldgis such as drug delivery
system$. In these studies, several types of biomaterials are desd|aanging from mod-
els for studying protein folding to molecular materials fsoducing peptide nanofibers,
peptide surfactants by designing various classes of ssirabling peptidés These ex-
periments reveal many different interesting and imporganblems, which are related to
general aspects of the question why and how proteins folthis$ncontext, modern simu-
lation techniques have opened another window to give a ngighnto the protein folding
problen?.

In this study, we focus on the folding of the model proté&alg BA,BA; BAsBo
under the influence of a confining potential which simulatesage being composed of
rigid walls.

2 Model

The polymer chains are described by a coarse-grained hiydbig polar model which also
helped to understand protein folding channels from a megisperspective A manifest
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off-lattice variant of the HP modeéis the AB modéi, where the hydrophobic monomers
are labeled by A and the polar or hydrophilic ones by B. As anldttice, the adjacent
monomers are connected by rigid covalent bonds. Thus, 8iardie is fixed and set to
unity. The contact interaction is replaced by a distangeeddent Lennard-Jones type of
potential accounting for short-range excluded volumelsépn and long-range interaction.
An additional interaction accounts for the bending eneffggny pair of successive bonds.
This model was first applied in two dimensiérend generalized to three-dimensional AB
protein$, partially with modifications taking implicitly into accow additional torsional
energy contributions of each bond.
The AB model as proposed in Ref. 9 has an energy function

N-—-2 N-3 N-2 N 1 1
E=—r1 Y brbegi—ra D brbrya+4 Z Z C(oi,04) (ﬁ - W) 1)
k=1 k=1 i=1 j=i+1 13 19
whereby, is the bond vector between the monomerand . + 1 with length unity. The
second term in Eq. (1) takes torsional interactions intmant without being an energy
associated with the pure torsional barriers in the usuaeserhe third term contains now a
pure Lennard-Jones potential, where Il7ie§"j long-range interaction is attractive whatever
types of monomers interact. The monomer-specific prefactes, o) only controls the
depth of the Lennard-Jones valley:

. ) — +17 Ui70'j = A’
C(oi,05) = {+1/2, oi,0; =B or o;#0j. (2

Simulations of this model were performed with the multicaical algorithm® and the
update mechanism is a spherical update which is describRedfinl1 in detail.

3 Confining Potentials

The focus of this study is to comprehend the folding mecmamisproteins in their cellular
environments. To emulate this effect, the following poigstare used:

i) = 2 fer - - . @

so-eB(W2) ()]

SR -(R)]) @

whereR, is the sphere radius which is a measure of the cagessize(z? + y2 + 22)1/2

is the distance of a monomer to the origin and,, > are the coordinates of monomers,
o = 1.0 ande, = € = 1.0. For our simulations, we sdt. large enough to enclose the
protein inside the sphere.
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Figure 1. Specific-heat plots under the influence of potea}i¥, b) V2, and ¢) \4.

4 Results and Discussion

The effect of confinement on the thermodynamic properti¢isemodel protein was inves-
tigated by multicanonical simulations. We have chosen@mate radii such that proteins
are not allowed to move outside the sphere. The results anpaed to a bulk protein
which folds atI’ = 7. After calculating multicanonical weights,x 107 iterations were
performed in the production run. We computed the transtgomperature for the bulk pro-
tein and protein in cages with different radii. The resutts glotted in Fig. 1. When the
radius increases the effect of the confining potential desae so thak. = 100 behaves
like a bulk environment.

The specific heats of potenti&l, V> and V3 as a function of temperature are plotted
in Fig. 1a), b) and c), respectively. Generically, increiashe radius of the sphere causes
a decrease of the transition temperature. On the other tamdjtuation forl; is differ-
ent. TheVs potential contains an attractive part so the model protegtsfthe effect of
attractiveness of the potential at small radié& (= 25), and is adsorbed by the surface
of the sphere in a first stage and in a second stage it arratsggsticture. By increasing
the radius up tdz. = 45 the influence of the potential starts to decrease and sogtitsor
disappears.

As a result, for all cases specific-heat plots were broadertesh the radius of the
sphere decreases. Narrower graph means states closevio oais appear more often
than in the bulk situation. We can conclude that the protezomes more stable when the
radius of the sphere decreases. These results are corapaitibthe previous oné$4
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Nucleosomes are the basic compacting units of eukaryotiaydtio in which DNA is tightly
wrapped around histone proteins. Structural transitiomaicleosome open up DNA surface to
regulatory factors. Here we report a principal componenlyaiga(PCA) performed on a 100
ns nucleosome trajectory to obtain insights into the dominasttons of protein and DNA in
nucleosome.

1 Introduction

Eukaryotic DNA is hierarchically organized into chroma#iround single repeating units
known as nucleosomes. In a hucleosome about 150 bp of DNAragged in left-handed
superhelical turns around an octameric histone proteirptem The histone octamer has
a tripartite structure composed of a (H3-H#gtramer flanked by two H2A-H2B dimers.

The 1.9 A resolution structure of the nucleosome core particle akagk interactions
between the histone core, histone tails and DNA at atomaildietn the structure the four
histone dimers (two each of H3, H4, H2A and H2B) are arrandgmxiba two-fold dyad
symmetry axis, which also intersects with the middle of théAfragment (Fig. 1). The
histone proteins are composed of structured core domaig)ynv-helices, and unstruc-
tured tails passing between the DNA superhelix turns. Thé BNvound tightly around
the histone protein and held in place by 14 histone-DNA azintegions.

The nucleosomal organization of eukaryotes provides ptioteagainst possible DNA
damage and regulates access to it. Evidences suggest theg different periods of cell
cycle DNA access is regained by a number of different meamasii the transient dissoci-
ation and rebinding of peripheral DNA from nucleosome, eneycatalyzed or thermally
driven nucleosome sliding, incorporation of histone vatsao nucleosome having higher
mobility compared to the wild-type and histone post-tratishal modification&

Spontaneous structural changes in the nucleosome is ohe gfitmary mechanisms
that opens up the DNA surface to regulatory factors. One wayéntify the structural
states of nucleosome is to investigate large amplitudeecible modes of nucleosome
dynamics. In the present proceedings we report a principaponent analysis (PCA)
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H3-H4 tetramer
H2A-H2B dimer

Figure 1. Structure of the nucleosome (1kx5). (A) Half of tieleosomal DNA with locations of the (H3-H#)
tetramer and H2A-H2B dimer. The dyad axis is indicated by arr@®y Side view of the nucleosome with the
dyad axis.

performed on 100 ns molecular dynamics (MD) trajectory &nghidentification of slow
collective motions of the nucleosome.

2 Methods

The starting structure of all molecular dynamics (MD) siatidns was taken from the9
A resolution crystal structure of the nucleosome core glar{PDB ID: 1KX5).. All sim-
ulations used the CHARMM27 force fiéldn the NAMD program. The structures were
immersed in a cubic box of TIP3P water molecules and thereaesastl0 A of sepa-
ration between the solute and the edge of the box. The systnthen neutralized with
Na* ions and appropriate amount of NaCl was added to keep thersgsit 150 mM salt
concentration. Periodic boundary conditions were usedtla@dong range electrostatics
was treated with the particle mesh Ewald methoBor the van der Waals interactions a
switching function was applied a0 A and the cut-off was set o2 A. The integration
time step was 2 fs. The pressure was kept constant at atmasphessure at sea level
with the Nos-Hoover Langevin piston pressure cofittoah NAMD. The temperature was
maintained at 300K with a Langevin damping coefficient of 2.ps

Given the3N cartesian atomic coordinates(t) (i = 1,2,...,3N) the elements of
the covariance matrix’ of atomic positions are given &s;; = ((z — (z:))(y — (y;))-
Diagonalization of”' yields3 N orthonormal eigenvectors, also called principal compbnen
vectors, with variance? as corresponding eigenvalues, ordered in descending tadgni
Principal components are projections of the atomic trajgconto principal component
vectors. The first few principal components represent largplitude collective motion of
the system along independent directions.
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3 Results

To investigate collective modes of nucleosome dynamicsntiodion of the (H3-H4)
tetramer, two H2A-H2B dimers and the DNA during the 100 ngetrry were analyzed
separately using PCA ofd&atoms for the histones and phosphorous atoms for the DNA.
The analysis of eigenvalues for histones and DNA indicad tthe first two eigenmodes
account for~ 30% of the total atomic fluctuation.

PCA mode 1 PCA mode 2

Figure 2. Global motion of histone (excluding histone ta@lejl DNA in the nucleosome. (A)-(B)-(C) Dynam-
ics of the nucleosomal DNA, (H3-H4)Xetramer and the H2A-H2B dimers respectively in PCA mode 1. The
deformation is illustrated by superposition of structuréthvhe extremes indicated by blue and red tubes. Ap-
proximate directions of motion are indicated by arrows. (E)HF) Dynamics of the histone domains and the
DNA in PCA mode 2.

In nucleosome the DNA is wrapped around histones in aboutrimgs. In the first
mode the two DNA rings undergo anti-correlated compresaimh relaxation (Fig. 2A).
This mode of DNA dynamics would support the propagation ofNAlbulge along nu-
cleosomal DNA which has been proposed as one of the key misohsuof nucleosome
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sliding®. Concurrently, the (H3-H4)tetramer gets compressed and relaxed along the dyad
axis (Fig. 2B). Unlike the (H3-H4)tetramer which contacts the DNA near the dyad axis,
the two H2A-H2B dimers lie in two separate planes defined lkyDNA rings and, simi-

lar to the motion of DNA in the two rings, the H2A-H2B dimersdargo anti-correlated
motion (Fig. 2C).

In the second mode the DNA, the (H3-H4®tramer and the H2A-H2B dimers tends
to bend with respect to the dyad axis in an out-of-plane &as(fig. 2D, 2E, 2F). The out-
of-plane DNA motion may aid dissociation of peripheral cegi of DNA from the histone
octamer which has been observed in experinferits transcriptionally active chromatin
canonical histone H2A is rapidly exchanged with the H2A amr$ to regulate genomic
acces$ The out-of-plane anti-correlated distortions of H2A-H@ifners along the second
PCA mode is likely indicative of the motion associated witle disassembly of histone
H2A from the nucleosome.

Acknowledgments

MB thanks Karine Voltz for providing the 100 ns nucleosonggetctory.

References

1. Curt A Davey, David F Sargent, Karolin Luger, Armin W Maedand Timothy J
Richmond,Solvent mediated interactions in the structure of the ragzmene core par-
ticle at 1.9 a resolution.J Mol Biol, 319, no. 5, 1097-1113, Jun 2002.

. Karolin Luger,Dynamic nucleosome<hromosome Red4, no. 1, 5-16, 2006.

3. B. R. Brooks et. al.CHARMM: the biomolecular simulation prograjd Comput

Chem,30, no. 10, 1545-1614, Jul 2009.

4. James C Phillips, Rosemary Braun, Wei Wang, James Gumibarad Tajkhor-
shid, Elizabeth Villa, Christophe Chipot, Robert D Skeelxmikant Kal, and Klaus
Schulten,Scalable molecular dynamics with NAME. Comput Chem26, no. 16,
1781-1802, Dec 2005.

5. Tom Darden, Darrin York, and Lee Pederdearticle mesh Ewald: An N [center-dot]
log(N) method for Ewald sums in large systeifise Journal of Chemical Physi@8,
no. 12, 10089-10092, 1993.

6. Glenn Martyna, Douglas Tobias, and Michael Kle@gnstant pressure molecular
dynamics algorithmsThe Journal of Chemical Physid€)1, no. 5, 4177—-4189, 1994.

7. Scott Feller, Yuhong Zhang, Richard Pastor, and Bernaodl, Constant pressure
molecular dynamics simulation: The Langevin piston metfite Journal of Chem-
ical Physics103 no. 11, 4613-4621, 1995.

8. H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. GellRotymer Reptation and
Nucleosome Repositioninghys. Rev. Lett.86, no. 19, 4414—, May 2001.

9. K. J. Polach and J. WidoriMechanism of protein access to specific DNA sequences in
chromatin: a dynamic equilibrium model for gene regulatiahMol Biol, 254, no. 2,
130-149, Nov 1995.

N

28



Protein Structure Prediction Using CABS
— A Consensus Approach

Maciej Blaszczyk, Michal Jamroz, Dominik Gront, and Andrzej K olinski

Laboratory of Theory of Biopolymers, Faculty of Chemistry, Univtigref Warsaw
02-093 Warsaw, Poland
E-mail: mblaszczyk@chem.uw.edu.pl

We have designed a new pipeline for protein structure ptiedidased on the CABS engine.
The procedure is fully automated and generates consensudsnicza a set of templates.
Restraints derived from the templates define a region of cordtional space, which is then
sampled by Replica Exchange Monte Carlo algorithm implememe&dABS. Results from
CASP9 show, that for great majority of targets this appro&elul$ to better models than the
mean quality of templates (in respect to GID'S). In five cases the obtained models were the
best among all predictions submitted to CASP9 as the first models

1 Introduction

Knowledge of 3D structures of proteins is a crucial requiatrfor a progress in many
areas of biomedicine, e.g. rational drug design. Due to timeptexity and high cost of
structure determination by experimental methods (mainyXtrystallography or NMR),
computer-based protein structure prediction methods baes placed in the center of
attention of a broad community of molecular and cell bioktgi Nowadays, there is a
number of publicly available web servers, which provide et for protein structure
predictiorf. Moreover, thanks to the meta-senvetswhich collect data from servers,
obtaining the predictions is even easier. However, for nposposes it is necessary to
provide one, possibly the best, final model. A common apgrdadhis problem is the
use of Model Quality Assessment Programs (MQAPSs) whichesowodels according to
various criterid and selection of the top scoring one. Obviously, the MQAR gaiopose
a model better then the best of input structures. ApplicatifCABS modeling todi with
spatial restraints derived from the templates allows faching beyond this limit.

2 Methods

The procedure used during CASP9 consisted of several Stgpsl) and was trained on
the targets from previous CASPs. The first step was tempéafestion. As templates we
used server predictions submitted to CASP9. The list of #reess from which models
were taken, was created on the basis of their performandegdiine CASP8. To check if
the best servers from CASP8 are still the reliable onesgsepredictions from CASP9
were ranked using 3D-jury scateThen, for all selected templates distances between pairs
of alpha carbons were extractedhe minimum and the maximum distance between pairs
of residues were taken as limits of the ranges of restralusing templates as a starting
structures we have run two independent Replica ExchangaeMoarlo simulations with
CABS.
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Figure 1. Flowchart of the pipeline used during CASP9. Sedéhkt for details.

CABS is a lattice model with a representation reduced to émited atoms per residue:
Ca, Cj, center of mass of a side chain (where applicable) and therceha virtual Gy —
Ca bond. The force field of the model employs knowledge baseenpiais derived from
the statistical analysis of the databases containing kretein structures. Conforma-
tional space is sampled using Replica Exchange Monte Cagthad. Application of the
restraints reduces conformational space for samplingghwviriakes modeling faster and
more accurate.

The resulted trajectories from CABS were clustéyeuhd the clusters’ centroids were
calculated. Because of reduced representation in CABSast mecessary to rebuilt the
atomistic details of obtained models. Reconstruction efliackbone using BB® was
followed by reconstruction of the side chains with SCWRLANext, we performed model
refinement, which was also done in two steps. To improve mgedeimetry (e.g. bond
length) we employed Modell&. Then, we used GROMACS in order to refine some
packing details. Finally, obtained models were ranked erbtisis of the clusters’ density
and the level of similarity of the models from two indepenidgmulations.

3 Results

Since the presented method aims at a consensus prediationafiset of templates it is
worth to compare the accuracy of obtained models and thel&tespused. For great
majority of targets GDTTS of the model was higher then mean GD¥ of templates.
Moreover, in 5 cases the accuracy of the model was bettertieeaccuracy of the best
template (see Fig. 2).
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Figure 2. Comparison of GDTS of templates and obtained models.

According to the official assessment our models (from Latooyaof Theory of
Biopolymers - LTB) for 5 selected domains were the best anatiqgredictions submitted
to CASP9 as the first models. As shown in Fig. 3, for great nitgijof targets, GDTTS
of obtained structure was higher then mean G of all models submitted to the CASP.

Howeve
multi-do

r, there are a few cases with significant losses ofracgu Most of them are large
main proteins, for which it was necessary to perfalomain division, which was

not supported in the procedure. This problem is to be soledfuture work.
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The Generalized Born Model is one of the most widely used irt@avent model for simu-

lating biomolecules. Its accuracy and speed crucially démenthe correct calculation of the
Born radii used for estimation of the polar solvation freergge While many improvements
in accuracy have been reported over the last years, theieimmitation in an efficient method
remained challenging. Here we present results for the géirgtion of a novel method for
computing these Born radii on modern multi-core shared memohjtaotures. This develop-
ment should significantly improve the acceptance and capabibf the implicit Generalized
Born solvent model.

1 Introduction

The development of efficient yet accurate implicit représgons of the environment re-
mains one of the important computational challenges fomoiecular simulation. While
numerical solutions to the Poisson Boltzmann (PB) equgiifonide an accurate estimate
of these effects their application in long Molecular Dynamics or Monte @esimulations

is very time consumirg The most widely accepted approximation to PB calculatisns
the Generalized Born (GB) Modelwhich estimates the polar solvation free energy by the
formula:

AGGB:_E (1_L>ZL (1)
2 ew i.j 1/7"1-2j —I—RiRj

The accuracy of this estimate crucially depends on the cbeadculation of the Born
radii R; which describe the burial of an atom in the solute moletul€ircumventing
expensive PB calculations, Grycukhowed that for a spherical solute these are given by
the following integral over the solvent region, which algelgs reliable results for most

non-spherical shapgs
13 / d’r @

R? 4 olvent |I‘ - ri|6 '
Solving these integrals poses the main computational citisin/GB models. Though
many methods have been developed to tackle this problenytiabmodels being limited
to spherical surfacés? require costly correction terms for small interstitial ites while
numerical algorithms are computationally more expensive t the integration proce-
dures or expensive surface triangulatiotf. Here we present results on the parallelization
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Figure 1. Octree representation of PDB 10CA (left) and tremeding solvent accessible surface (right).

of an efficient algorithm, called PowerBornRadii, to congthiese integrals for arbitrary
surface definitions.

2 Methods

For the algorithm to be independent on the surface definiiiois split into 2 steps as
reported elsewhete The first one consists of constructing a bounding cubic oxrad
the molecule and creating an octree representation of theesand solvent volume inside
this box, see Fig. 1, depending on the chosen surface definiti

In the second step the integral outside the bounding boxakiated analytically by
converting the volume integral to a surface integral andisglit for all six sides of the
cube. The integration over the bounding box’s inside is aaegb numerically by integrat-
ing over the octree cells not belonging to the solute volufis is either accomplished by
employing the analytical formulas for the integration other outside of bounding box with
an inverse sign or with a fitted approximate formula depemdimthe size and distance of
the octree cell to the locatian of the atom of interest.

3 Results

Here we test a parallelization scheme for shared memorytectires where we split the
bounding box into smaller cubes for which the octree corsibo and integration can be
performed separately from each other. The cubes are queusttiprocessed by a pool of
worker threads. Finally the integration results from eadnker thread are added up and
the integral is converted to the Born radius via Eq. (2).

For assessing the accuracy of our proposed method we compaoemputed Born
radii using the solvent accessible surféde those computed by solving the Poisson Boltz-
mann equation numerically using APBSsee Fig. 2).The results from our method are in
very good agreement with PB Born radii. The deviations armiyattributed to the inte-
gral expression (2) itself, as was found in Ref. 6.

Timings and speedup measurements were run using the 70SdrieetRNA Com-
plext® with 220387 atoms on a node with four AMD Opteron 8431 sixecprocessors
(see Fig. 3). We observe a very good scaling using up to 5dlrédlowed by a mod-
erate speedup using up to 17 threads, reducing the computatie to 11% of the single
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Figure 2. Precision of PowerBornRadii compared td-igure 3. Speedup measurements for the multi-
those computed using the PB solver APB®r the threaded version of PowerBornRadii on a 24 core
solvent accessible surface of PDB 10CA. computation node. For more details see the text.

threaded version and resulting in a total runtime) @2 seconds for the computation of
220387 Born radii. Using more threads leads to an increasenmputation time, thus
requiring more code optimization to further improve pastiation.

The present implementation will be made available, which significantly speed
up biomolecular simulations involving the Generalized iBorodel on multi-core shared
memory machines, which are widely in use today. An MPI baseglémentation for
distributed memory machines is under development.
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The iron-porphyrin, haem, is a ubiquitous, versatile mole@ssential to all life. Some organ-
isms can synthesise haem but certain pathogenic bactet&irslife using exogenous haem.
HemsS is a protein vital t&ersinia enterocoliticand contains the important missing link be-
tween our knowledge on haem acquisition and iron/haenzatitn in Gram-negative bacteria.
Our research combines biophysical and computational teahsitp study the protein’s func-

tion(s) and the mechanism(s) in achieving it/them, with reeeperimental results suggesting
that HemS is a novel NADH-dependent haem breakdown enzymemeéhbanistic details are

studied computationally by the stochastic basin-hoppiggrithm, employed here for the first
time in a discovery-oriented application and has thus fegat®d properties of the protein which
have not yet been observed experimentally. This insighttlirfeirther experimental research
and this dual approach has proven to be a powerful route ttoexpew mechanisms which

were previously difficult to access.

1 Introduction

1.1 Iron and Haem in Biology

Iron is a versatile and abundant element. Often in biologn is found to be held in a
versatile, asymmetrical and ubiquitous organic ring, theopyrin — this is haemhb). This
magnificent cofactor is responsible for many roles in biglegg. O, carrier in hemoglobin
or electron conductor in certain cytochrome systems. Itffiedlt to define what a haem
binding pocket is, because there are many ways to interalatthis molecule. It is made
even more difficult in the current research, because we aresiiog on a class of proteins
which are not the terminal receptors of haem as exemplifiedegtbut a group of proteins
which pass on haem from one place to another, a class knovne &sém chaperones.

1.2 Haem Uptake System irversinia enterocolitica

Many organisms can synthesise haem by a well-studied htiostio pathway, or they can
acquire haem from external sources. The pathogenic Grgatise bacterid’ersinia en-
terocolitica, often found in raw meat and causes severe food poisoningjras haem by
scavenging off the molecule from a haem-rich soueg, red blood cells. Once it ac-
quires the cofactor, it passes haem onto a series of haemarcimegs in order to permeate
two membranes. This is the Hem uptake systefihe terminal receptor of this system is
Hems, the focus of the current research. ilamSyene is essential 8. enterocoliticaand

is a vital facilitator between the processes of haem uptakidran release, but its precise
role is currently unknown.
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2 Biophysical Work on HemS

The crystal structure of HemS has been solved in bothafie and holo-forms and it
is shown to be unlike any other class of haem binding prétePespite the pseud6-
symmetry, HemS is observed to bind only one haem in an unimseah binding pocket
and haem binding involves global conformational change.

One of the first tasks of this project was to elucidate thetionmf this protein. It was
found that incubatindgiolo-HemS in NADH vyields a novel product, which is purple and
not any product along the canonical haem oxygenase pathwiéere is no known sys-
tem where NADH directly reacts with haem. Purifying and euéerising this breakdown
product is an ongoing effort. A puzzling feature of this té@tis that haem seems to in-
hibit its own breakdown, at a concentration where haem isvkrnio exist primarily in the
dimeric fornf. Searching the surfaces of the HemsS cavities against knavH\binding
sites by Relibasg® reveals an NADH binding site adjacent to the haem bindingebc
Could haem, therefore, inhibits its own breakdown by blogktihe NADH-binding site as
a dimer? Even more interestingly, mass spectrometry datarariagenesis studies have
provided evidence that HemS can bind more than one haem ubejdwt the second one
binds with a much lower affinity.

3 How Computational Work Guides Experiments

Experimental data put the stoichiometry of HemS, as sugddsy the crystal structure,
into question. Furthermore, we need to address its NADHaddent enzymatic activity.
In other words, we want to elucidate the NADH binding mechaniand to address the
possibility of (an) alternative haem-binding site(s). Shbuld be two sides of the same
coin, or might not be related at all.

The experimental challenge is that reactive structuredamdffinity binding sites are
difficult to study physically. In order to study this problexhan atomic level, we approach
it theoretically by examining the underlying potential emesurface (PES) of the system —
we want to know how the energy of the system changes with cegpéhe nuclear geome-
try of the system. This is performed using the state-ofahesoftware, GMIN (interfaced
with AMBER9)®, which stochastically explores and locates energy minifitaePES us-
ing the basin-hopping algorithm This is the first time this method has been applied to a
major discovery-oriented application.

4 The NADH Binding Site

Bioinformatics has given us a starting point for calculatipand as such, the NADH con-
formation from Relibase was superimposed onto thelo-HemS structure and was sub-
jected to energy minimisation and geometry optimisatiangi$AMB)GMIN. In the soft-
ware, the user can specify moves or combinations of moveertanb the protein and/or
ligand structures to sample the configuration space of thesy A “basin-hopping step”
can include, therefore, moves such as rotating the sidasisarrounding the ligands, ro-
tating around any bonds of the ligand itself, overall tratish and rotation of the ligand,
or even performing molecular dynamics on the entire sysiighis overcomes the common
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Figure 1. @) Typical Result fromholo-HemS+NADH Calculations;h) and €) Two examples of the conforma-
tions the Phe gate adopt.

problem of conventional bioinformatics methods where glamnformational changes of
protein upon ligand binding is often difficult to address.

HemsS is a large system, and so these calculations are catiopatly very expensive,
but from these we have thus far observed a number of integestructural features of
the protein which appear to play important roles in NADH hngdand activity. Shown
in Fig. 1@) is a typical result of such calculations and seven residueshighlighted.
These residues are frequently identified as key functior@aigs for NADH recognition,
especially at the phosphate backbone of the ligand, andstuettural motifs have never
been seen before. In particular, the lysine (blue) is ofésponsible for amide recognition,
which is coupled with, shown in Figuresh(and €), an unusual pair of flexible pheny-
lalanine residues which often forms a gate in different oomftions shielding the haem
from the rest of the cavity. BLAST search showed that thesilues are well-conserved
in homologous proteins. It is possible thatr interactions play a key role in the NADH
reaction, given the nicotin-amide becomes charged-aiompon hydride transfer.

Superimposing the NADH conformations of all calculatiohew good structural con-
vergence overall, especially at the phosphate backborik,thé putative reactive func-
tional group, the nicotin-amide, adopting multiple possitonformations. When the same
calculations were repeated on thpo-structure, there is little structural convergence in
protein and ligand, suggesting the necessity for the poesefhaem to activate the cavity
(see Fig. 2).

Figure 2. Results of parallel calculations) NADH conformations oholo-HemsS; b) residue conformations of
holo-HemS; €) NADH conformations ofipo-HemsS; €) residue conformations @fpo-HemsS.
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5 Conclusions and Future Work

HemsS is an NADH-dependent haem breakdown enzyme using eegented chemistry
to release iron from haem in a haem concentration-depemc@mber. The basin-hopping
algorithm has enabled us to confidently identify an NADH ligdsite in HemS and sug-
gest seven key residues that could be crucial for NADH reitiogn Consequently we are
currently in a position to validate this experimentally butagenesis. It is also important
to identify the structure of the haem breakdown product. iBbaes of substrate inhibi-
tion and an alternative haem binding site are being addildss¢he same method, and is
currently work in progress.

We believe that HemS is a regulatory protein which servesaardle in haem seques-
tration and haem breakdown / iron release depending on tysigdbgical environment.
The novel computational method enabled by GMIN has providedh valuable insights
into this problem which would otherwise be impossible toniify experimentally alone.
The combination of bioinformatics, theory and experimdrds proven to be a powerful
route to explore new mechanisms which were previously diffto access.
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ATP-binding cassette (ABC) transporters are one of theektrgnd ubiquitous families of mem-
brane proteins. ABC transporters translocate a varietylogtsates across membranes by under-
going conformational changes induced by the binding anddiysis of ATP molecules. Even
though different subfamilies of these transporters have mEmtified, eukaryotic and prokary-
otic transporters share a common structural architecturefvdonsists of two transmembrane
domains (TMDs), and two nucleotide binding domains (NBDs)e ibman transporter associ-
ated with antigen processing (TAP) is a heterodimeric AB@dparter that shuttles antigenic
peptides from the cytosol into the endoplasmic reticulum lunwe used molecular dynamics
simulations to investigate the dynamics of this transpodex function of the nucleotide-bound
state. The ATP-bound system shows a high structural gghilhile larger fluctuations char-
acterized the ADP-bound state, resulting in a partial apgeni the NBD dimer in some of the
simulations.

1 Introduction

ABC transporters couple the hydrolysis of ATP with the tgzors of substrates across
membranes. They consist of two nucleotide binding domaiBi)s), where ATP binding
and hydrolysis occur; two transmembrane domains (TMDs)chlvbonstitute the translo-
cation pathway, and optional additional domains. Two ATiilbig sites are located at the
interface between the NBDs, and consist of highly consemvetifs involved in ATP bind-
ing. Because of the head-to-tail orientation of the NBDshe@l'P binding site is formed
by the Walker A, Walker B motif, as well as H- and Q-loop fromeoNBD combined
with the Signature motif and the D-loop from the second NBbBe RTP binding induces
NBD dimerization, and the following ATP hydrolysis provi&lthe energy needed for the
conformational changes of the TMbs

TAP is an ABC transporter involved in the immune responserbhgdocating anti-
genic cytosolic peptides into the endoplasmic reticulumléading into MHC class |
moleculed. TAP is a heterodimer (TAP1/TAP2), characterized by asymmeTP-
binding sites (Fig. 1). As a consequence of the mutationsiroiog in the NBDs, the
ATP binding site in TAP1-NBD (TAP1-Walker A and B motifs, TRFSignature motif) is
degenerate, and shows a lower ATPase activity with respebetconsensus site in TAP2-
NBD (TAP1-Signature motif, TAP2-Walker A and B motifs). Imi¢ study, we investigated
the dynamics of TAP-NBDs by means of molecular dynamics (ldiDjulations. We built
a model for TAP-NBDs, and we simulated the system in the pesef ATP or ADP
molecules.

41



Walker A Walker B Signature  Q-loop D-loop  Switch
TAP1L  GPNGSGKST  VLILDD 1.8GGQ  VGQEP  SAID  ITQHI
TAP2  GPNGSGKST VLILDL LAAGQ VGQLP SALD  [AHRL

Consensus site Degenerate site

£
8
Walker A o Walker A 5
3 2 Y ;L an S
% v > ¥ o & 4 s
7 'Siguature W T Signature
Qs

WalkerB 4 °

Figure 1. Ribbon representation of the TAP-NBD dimer. TAPd @AP2 are in yellow and green, respectively.
The residues forming the conserved motifs in the TAP1- and TNBD are displayed, and the non-consensus
residues are highlighted in red. A close up view of the cosgsrand the degenerate sites is also shown. The
nucleotide is represented as mesh.

2 Methods

Homology modelingA model of the TAP-NBDs was built by first performing a sequenc
alignment between these two domains using ClustalWie crystal structure of TAP1-
NBD (PDB access code 1JJ7) was then used as a template toab8I TAP2-NBD
model using with Modeller 9v6 progrdin TAP1- and TAP2-NBD were then aligned to
Sav1866-NBDs, to obtain the final TAP-NBD dimer. ATP, ADP avig?* were added
according to PDB codes 2HYD and 2IXE, respectively.

MD simulations.All simulations were carried out with GROMACS 4.0.7 soft@ausing
the GROMOS53A6 force fiefd Each system (ATP1-ATP2, and ADP1-ADP2) was min-
imized first with position restraints for protein heavy ateand nucleotide atoms, then
with position restraints for the nucleotide. 1 ns equilttma was performed with position
restraints for protein heavy atoms. Per each system, 4 @mdlgmt simulations (R1, R2,
R3, R4) of 100ns long were ran.

3 Results

To describe the dynamics of TAP-NBDs, we measured the distarbetween the
B-phosphate of ATP or ADP and the center of mass (COM) of tha&ige motif, as
well as the distance between the COM of the Signature and #ikeWA motif. We also
calculated the root mean square fluctuations (RMSF) of tlckentide (ATP or ADP) and
the Signature and Walker A motifs in each binding site. Thegarison of the values
obtained from the ATP1-ATP2 system with the values obtafnam the ADP1-ADP2 sys-
tem describes possible structural rearrangements on thizsNB a consequence of ATP
hydrolysis.

Fig. 2A-B shows the results for the degenerate site. When Ad®present (Fig. 2A),
no significant differences in the measured distances weserebd. After 100 ns of simu-
lation, the mutual orientation of the nucleotide and theamumding motifs remained unal-
tered in all the four runs. In contrast, the presence of ADB.(@B) increased the distance
between the3-phosphate of ADP and the COM of the Sighature motif by abo2itndn
during the first 20 ns. The same pattern was found for therdistaetween the COM of the
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Figure 2. A-B. Degenerate site. The distances betweegf{bieosphate of the nucleotide (A, ATP, and B, ADP)
as well as the distances between the Walker A of TAP1 and tira8ire motif of TAP2 are shown as a function
of the simulation time. C-D. The corresponding distancestawe/s for the consensus site in the presence of ATP
(C) and ADP (D). Sign, Signature motif; WA, Walker A motif.

Signature and the Walker A motifs. In these simulations, ARed bound to the Walker
A motif, while the Signature motif adopted a different otigtion with respect to the start-
ing structure. The RMSFs for the degenerate site when ADRowesent were higher than
the values found for the ATP1-ATP2 system (Fig. 3). Fig. 2@iBplays the results for
the consensus site. In the presence of ATP (Fig. 2C), foettuas (R1, R2, and R4) the
measured distances were higher than the values obtained¥f&1 in the degenerate site
(Fig. 2A). However, after 60 ns, the distances convergedbhoes close to the initial ones,
and no dissociation between TAP1 and TAP2 was observed. nimast, the presence of
ADP destabilized the dimer interface. The distance betweeADP 3-phosphate and the
Signature motif increased of 0.05 (R1), 0.1 (R4) or 0.2 (R®,Mn after 100 ns, indicating
a closer interaction of ADP with the Walker A motif (Fig. 2[2ft). Furthermore, after 100
ns, the distance between the COM of the Signature motif ambMdlker A motif is 0.1 nm
higher than the starting structure (Fig. 2D, right). As foe tlegenerate site, the RMSFs of
the nucleotides and the conserved motifs were higher whel wBs present (Fig. 3).

4 Conclusions

Molecular dynamics simulations were used to investigagedynamics of the TAP-NBD
heterodimer in the presence of either ATP or ADP moleculesilte ATP1-ATP2 system,
the interactions between ATP, the Signature and the Walk®o&f are preserved both in
the consensus and the degenerate sites for the whole lenigith simulations. No dimer
opening is observed in this set of simulations. Howevercthesensus site shows larger
fluctuations and changes in the measured distances for ¢hé&@ims, perhaps due to the
homology modeling of TAP2. The ADP1-ADP2 system is assedatith a higher struc-
tural instability, and in this case, the degenerate and tmsensus site show a different
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behavior. A clear increase in the distance between the &igmand the Walker A motif
is observed only for the degenerate site. However, the latheoy- phosphate induces a
different orientation of the nucleotides in both the birgdgites with respect to the starting
structure. ADP molecules stay bound to the Walker A motifjlevimost of the interac-
tions with the Signature motif are not preserved. Additl@imulations are in progress to
confirm the partial opening of the NBDs in the presence of ADP.
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RNA molecules form three-dimensional structures as compleanemiases form bonds and
the molecule coils. These structures determine the functighbéochemical activity of the
molecule. For example, the presence or absence of a specifics&N&ure can invoke tran-
scriptional pauses or terminate the transcription altagretWe have developed a structure-
based model for studying the folding dynamics of RNA secondtmyctures. To simulate the
dynamics, we use a Monte-Carlo method with Metropolis ratégresthe basic steps are the
closing or opening of one native contact. We apply this moadléhe folding and unfolding of
simple RNA structures in the presence and absence of an akterce.

1 Introduction

RNA is a linear polymer made out of four different bases: auer{A), cytosine (C),
guanine (G) and uracil (U). Two pieces of an RNA molecule cannect via hydrogen
bonds between complementary bases (AU and GC), such theiNAgolds into a three
dimensional structure. RNA structures are usually desdréxs a hierarchy of structures:
the sequence of bases in the molecule is called the primargtste, the set of all base
pairings the secondary structure and the three-dimerisbape of the molecule including
all other structural elements the tertiary structure. @gfdy, this hierarchical description
reflects the hierarchy of the folding process where the pyirs&ructure determines the
secondary which in turn determines the tertiary contactSreat effort has been done
on understanding and predicting the secondary structuRN# molecule$. Moreover,
over the last decade single molecule experiments usingadtveezers were performed
on a number of RNA structures to study their stability, tHeice dependence and their
dynamics. In cells, RNA structures often fold while the RNArianscribed. In such cases,
the dynamics of folding is typically crucial for the functiof the RNA. An example is
the formation of hairpins during transcription, which camadke transcriptional pauses or
terminate the transcription altogether

In the following we present a simple model which aims at dbswy the dynamics of
RNA secondary structures. The model we have developed isictste based model, i.e.
we concentrate on the native contacts of a given RNA stracind study its dynamics.
Structure-based models have been used extensively irestofliprotein folding. They
are based on the principle of minimal frustration that stéitat functional sequences have
been selected to avoid energetic frustration to ensurel fapding*. As a consequence,
the dynamics of folding is expected to be governed by the dateeactions that govern
the folded state. The same arguments should also apply folthieg of structured RNAs,
and indeed similar argument have occasionally been uséRIN@P. Here we use a Monte
Carlo method to simulate the folding dynamics. We will sh@suits on the stability of
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secondary structures and the distributions of folding anfiblding times as well as on
force induced unfolding.

2 Model

The secondary structures we consider consists of five basicteral motifs that arise
from base pairing: simple unconfined single stranded pie€€&NA, helical regions of
subsequent paired bases, hairpin loops that form an endeticalhregion, internal loops
with more then one outgoing helical region and bulges. If wenber the bases of an
RNA molecule{l... N} the secondary structure can be described as a set of(pajis
denoting the formed base pairs. Here we consider only strestwithout pseudo knots
which is a common restriction in the prediction of secondstructures. Therefore two
base pairg:, j) and (¢, 7/) must either fulfilli < i’ < 7/ < jori <i < j < j'. These
conditions ensure that no base pair can form between a b#ise iagion separated by the
first base paifi, j) and a base outside that region.

Our RNA model is structure based. We take the RNA to be a segusfrbases where
only specific, predefined contacts can be made between ba#est sequence. These
positions are defined by the native (folded) structure oRN& molecule. Here we restrict
ourselves to contacts that form by base pairing, but addititypes of contacts could also
be included. Then the dynamics of the RNA molecule are ardlysing a Monte-Carlo
method with Metropolis rates. The basic steps are the goaid opening of contacts.
This is done by choosing a base pair randomly from the listoskjble base pairs. If the
chosen base pair exists already, then it might open, andidas not exist, it may close.
The probabilities for the opening or closing moves are dated from the free energy
difference of the structure before and after the step. Wenasghat the free energy of a
structure can be calculated as a sum of energy contributionsthe different structural
motifs. Forming a base-pair is energetically favorablett@nother hand the formation of
a loop constrains the RNA molecule which is entropicallytiyos

Gtot: Z Gbasepair‘F Z Gloop~ (1)

all basepairs all loops

Here we use a simple parametrization of the free energieschiise each base pair to
contributeGpasepair= —2 kcal/mol. Energy contributions of loops depend logarittetly

on the loop length. For hairpin loops, which require> 3 bases in the loop, we take
Ghairpin lood™) = (5 + In(n/3)) kcal/mol, while internal loops and bulges are assigned
Gintioop(n) = (2 + In(n)) kcal/mol.

3 Simulation Results

In the following we will use a contrived and simple hairpinustture to demonstrate key
features that our model describes. Our model structureistsns a loop closed by con-
secutive identical base pairs. Despite its simplicitys 8tructure already shows some uni-
versal properties which one can expect to find in more coaf@it systems. First we look
at the behavior of a free hairpin (Fig. 1). Starting simaias with a fully closed structure,
i.e. with all possible base pairs formed, we observe base fmaopen, and after some time
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Figure 1. Lifetime (unfolding time) of a hairpin: left: Distition of the lifetime of a hairpin with a 5 bp stem-
The lifetime is defined as the time it takes to get from the stdierevall possible base pairs are closed to the state
where all are open. right: Mean lifetime plotted as a functibthe number of base pairs in the stem (red) and
corresponding closing (folding) time (green).

all contacts are disconnected for the first time. We callttredifetime or unfolding time of
the hairpin. The distribution of unfolding times is expotiah(Fig. 1(left)), a hallmark of
two-state folding, as also indicated by experiméntskewise the distribution of folding
times is also exponential. We then varied the length of theste. the number of possible
base pairs in the stem. The mean lifetime of the hairpin déperponentially on the stem
length, while the folding time, the time it takes to close &jhia from a single stranded
chain does not depend strongly on the stem length (Fig. HtfyigThis result is plausible
since the limiting step of folding is the formation of the fil®ond, which is unfavorable
due to the loss of entropy from the loop formation, while thieeo base pairs are closed
very quickly once the first bond is formed.

Next, we use our model to simulate a hairpin under pullingder We introduce an
additional energy term which goes witfy,.; * Ax, whereF,,; is a constant external force
and Az the relevant change in chain length arising from base mairile determine the
equilibrium distribution between the folded and unfoldéaites as a function of the applied
force. For a hairpin of length 5, we observe a sharp tramsftimm mostly closed to mostly
open at about 9 pN (Fig. 2), reminiscent of experimental pfagimns for more complex
hairpin$.

4 Concluding Remarks

We have studied the folding and unfolding dynamics of sinif&\ molecules with Monte
Carlo simulations of a structure based model. With our medelare able to show the
expected dynamic behavior of an RNA hairpin. As may be exggbate find folding and
unfolding times that are exponentially distributed. Thiglifeg of such a structure is mainly
limited by the formation of the first base pair, while the dision strongly depends on the
length of the stem which gives the stability of the foldedest®ur model also allows us to
introduce external forces on the RNA molecule. We see a#yficce extension behavior
where at a narrow force range the RNA changes from a folded tméolded formation.
This model can also be extended towards a more detailed anel ralistic, empirical
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Figure 2. Mean end-to-end distance of an RNA molecule as aiumof the external pulling force. Our model
hairpin of length 5 bp unzips.

energy parametrization, similar to what is used in secgondtaucture prediction. With
that parametrization, which is, of course, sequence degrgnguantitative agreement with
the experimental data is obtairfed
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BioShell project has been started in 2005 as a set of stamgrograms aimed on simpli-
fication of typical bioinformatics tasks. Since then it haslegd to become a fully featured

scripting language for biomolecular modeling and structhi@informatics. Most recently, the

development of the package is focused on incorporating watigpes of experimental data into
protocols for structure prediction of proteins and theimpdexes. In this work we present an
application of Small Angle Xray Scattering (SAXS) profilesttee determination of mutual

domain orientation in multi-domain proteins. Preliminary tesguggest that the scattering
data can be successfully used in studies of large macromatezsgemblies providing that the
structure of the individual interacting partners are known

1 Introduction

One of the most important challenges in modern structurdbly is the characterization
of multi-domain macromolecular complexes that govern eomggurt of important cellular
functions. These large biomachines are very difficult terder standard experimental
methods. Due to their size and flexibility investigationtwit-ray crystallography or NMR
spectroscopy is not always easily accomplishable. Multiglinary methods are amongst
the most promising approaches. Structures of separateiprdomains, that have been
previously determined with Xray or NMR methods may be prpeosmbined into whole
complexes with the help of Electron Microscopy (EM) or Sn¥atigle Xray Scattering
(SAXS) data. SAXS profile is a function of all atomic coordies for a given system
and provides only an averaged description of macromolesi#da and shape encoded in a
very synthetic way. Informational entropy analysis suggésat a scattering profile may
be used to determine only several independent degreeseafoine The data however is
considered to be satisfactory for the unique definition afrgetry of a macromolecular
assembly.

SAXS data has been already incorporated into many modelatfppms, e.g. NIH-
Xplor! or ATSAS. Here we describe its successful combination with the Bati$hodel-
ing platform. BioShefl package has been originally created for structural biomédics'.
The suite of programs was growing and new functionalitieeeHzeen emerging. After
several years of development the package is capable t@dalithe necessary modeling
routine$. BioShell routines may be called from any programming laguthat operates
within Java Virtual Machine (JVM), most notably from Javapi@mentations of Python
(jython) and Rubby (jRuby) as well as from Java itself. Thiakes it a very versatile
platform that may be quickly applied to various modelingjects.
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2 Materials & Methods

In this contribution SAXS data has been used in determinaifdhree-dimensional (3D)
structure of two-domain proteins, provided that the highketution structures of both do-
mains are known. Conformation of the linker that connectaaos has been subjected to
conformational sampling while the structure of each of thendins has not been altered.
SAXS data has been applied as the only scoring term to guaesditk in the conforma-
tional space towards the correct geometry.

2.1 Conformational Sampling

CartesianProteinSystem module of the BioShell packagebbas used for conforma-
tional sampling. Due to its very general and careful desgmide range of mover
objects are available for introducing conformational aes In the course of this
work, RandomDihedralMover has been used to modif¢ dihedral angles at randomly
selected position in the linker region. The mover objecippses newd,¥ coordinates
according to an empirical probability distribution thatshbeen obtained from loop
conformations extracted from a non-redundant set of higlelution protein structures.
A trial conformation has been accepted or rejected accgriirthe Metropolis criterion
with SAXS-basedy? statistics. Simulated annealing Monte Carlo protocol wasdu
to generate short trajectories, starting from a randomaromdtion of the linker. The
structure of the lowest energy (i.e. of the be3fit) has been reported from each trajectory.

2.2 SAXS-based Model Assessment

In this work we followed the frequently used approach to sateISAXS intensityl (¢) at
any arbitrary scattering vector lengjtwith the Debye formula:

NQ Na

sm(qd” )

ads; @

fi(a) f5(q
=1 j=1
whered;; is the distance between i-th and j-th atom of the moleculerit form factors
f(q) were properly corrected to reflect the effect of displacddest. Following the work
by Fraser et &f, dummy solvent atoms were placed at all atomic position&iwithe
macromolecule with the form factors computed from on averdgctronic density of bulk
water. The Debye formula was employed in computations oéartitical SAXS spectrum
for each trial protein conformation, i.e. at every MontelG@anove. The quality of the fit
between the experimental scattering data and those peddicim the models is described
by the x? statistics over the set df,, values:

Ny

Ireferencéq ImodeI(Q)
Nq 1 Pt [ a(q) )
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linker residues

PDBid | Nes from to

la62A | 125 42 47
1do9B | 153 94 100
ImgtA | 169 49 61
lammA| 174 79 88

1nkrA 195 96 102
lknyA | 253 123 127
1ctuA 294 170 188
1j8mF | 295 83 95
ljpnA 296 86 98
1calA | 370 244 256
lbagA | 425 344 349
leovA | 487 128 137

Table 1. Benchmark set used in this study. Each of these psotgimprises two domains. Conformational
sampling has been restricted to the inter-domain linker redefined in the table.

3 Results

A benchmark set of twelve proteins (summarized in Tab. 1eHseen utilized to test the
protocol. These targets have been chosen to cover the typitge of polypeptide chain
lengths, at the same time providing representatives faghalmajor protein architectures.
For each of these proteins 50 000 structural models have daeulated. Results have
been summarized in the Fig. 1 where each dot represents le siaglel. The plotted
range of the coordinate root mean square deviation (crnetd)den a model and the native

SAXS energy

o | I I | | SR I | | B | | |
2 4 6 810 2 4 6 810 2 46 810 6 8 10
crmsd to the native structure (A)

Figure 1. Scatterplots that show modeling results for thdvaroteirls in the benchmark set. SAXS energy (Y
axis, arbitrary units) is plotted as a function of crsmd (froi to 12.0A in each of the scatter plots).
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structure (X axis) has been set to [@°\£12.0A] although for some of the cases much larger
values have been observed. Since SAXS scattering intef{gifygrows quadratically with
the number of atoms in the scattering systerh,statistics also varies greatly with the
size of a target protein. Therefore the SAXS energy valuetherl axis are shown in
arbitrary units, scaled separately for each box of the auitiplot. In all but one of the test
cases 1d09B), SAXS energy decreases as the conformational samplingpiaching
the native conformation according to a funnel-like depeicde Additionally, for two other
cases leovA and 1j8mF ) conformational sampling turned out to be inefficient in the
proximity of the native structure. Domain packing in the tetber test cased:a62A and
1mgtA is relatively tight which explains the fact that the samglprocess yielded mostly
very good structures. Some conformations that otherwiséddmave low SAXS energy
were excluded due to steric clashes.

4 Conclusions

From the perspective of typical biomolecular modeling met) the test systems presented
in this contribution should be considered as quite large: Jitoblem has been made com-
putationally tractable by freezing all but a small fractwfrthe degrees of freedom. Only
from 12 to 36 main chain dihedral angles have been subjesteahtformational sampling.
This however granted enough flexibility to the protein chtaisample the whole space of
mutual orientations between the domains. In general, SAK&sed score has been able
to pinpoint the correct conformation. It should be also nme@d that even very small
deviation in domain orientation (e.g. a tiny rotation of mfe¢he domains in respect to the
other one) may result in relatively large crmsd value.
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Archaeal transducers of the sensory rhodopsins phototsigtal possess two HAMP (Histi-
dine kinases, Adenylyl cyclases, Methyl binding protelPBpsphatases) domains — a notable
distinction from bacterial chemoreceptors. Here, we amathe HAMP domain region (in-
cluding the inter-HAMP region enclosed between the HAMP dos)eof NpHtrll and discuss

its possible roles for signal transduction. We propose ttiainter-HAMP region structure is
a coiled coil. Molecular dynamics simulations show that th@tgmers prefer to be longitudi-
nally shifted by about 1.3, with the free energy penalty for the symmetric structuresinge
1.2-1.5 kcal/mol, which means that the inter-HAMP region ignasietric and bistable. Both
flanking HAMP domains are mechanistically coupled to the #it&MP region, and are also
asymmetric. The longitudinal shift in the inter-HAMP regiogsults in the displacement of
the cytoplasmic part by 8.4 relative to the transmembrane part in the membrane plane. The
established properties suggest that (1) the signal may beduaed through the inter-HAMP
domain switching and (2) the inter-HAMP region may exist tol#eaimeric cytoplasmic parts
of the transducers to come close to each other to form highieroligomers.

1 Introduction

Archaea employ sensory rhodopsins (SR) | and Il as photptereto move towards red
light, which enables bacteriorhodopsin and halorhodopstivity, and to avoid harmful
near-UV light. The phototactic signal is generated in SR and then relaytgtransducer
protein (Htr), whose cytoplasmic tip forms a complex witheBhkinase and modulates
its activity, similar to bacterial chemoreceptarsMeanwhile the primary events in the
signal transduction chain are thought to be understdgiirther propagation of the signal
through the HAMP domain(s) is much less cfearere, we describe the analysis of the
Natronomonas pharaonidtrll (NpHtrll) HAMP domain region structure and properties,
and propose its role in the signal transfer.

2 Methods

The thorough description of the employed methods may bed@isewherz Homol-
ogy models of the HAMP1 and HAMP2 domains were built using MERIDERS. Initial
models for the inter-HAMP region were built manually witrethelp of SAMSON soft-
ware. All molecular dynamics simulations were conducted usidgD2 progran? with
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Figure 1. A) Hydrophobic groove of thidpHtrll inter-HAMP 135-153 fragment. Alanines are highligtita
pink. B) Model of a homodimer of the twipHtrll inter-HAMP 135-153 regions. Note the asymmetric pasiti
of protomers and the differences in ionic bonds formed on eigehas the structure. C) Free energy profiles for
the relative longitudinal shift of the protomers in the iRkBAMP region (NpHtrll residues 135-153) at different
molarities: 0.5 M (blue, solid), 1 M (magenta, dashed), 2 MIpwel dotted) and 4 M (green, dot-dashed). Note
that the minima are at abott1.3 A and the barrier height is 1.2-1.5 kcal/mol. Reprinted wignrpission from
Gushchin et al., Biochemistry 50, 574-580, 2011. Copyr{@h2011 American Chemical Society.

CHARMMZ27 parameters. Preparations of initial models ané @aalysis using our own
tcl-scripts were performed in VMD Al residues were assumed to be in standard proto-
nation conditions. Longitudinal shift was calculated asffedence between projections of
the centers of mass of each helix on the common axis. To deterttme free energy of a
system as a function of longitudinal shift the umbrella shngptechnique was used.

3 Inter-HAMP Region

Phototactic signal transducers have a notable distinctionpared to bacterial chemore-
ceptors, as they have two HAMP domains instead of one. Th&iP domains are sep-
arated by a short linker, with a typical length of two or foweptads. The structure of
NpHtrll proteolytic fragment comprising residues 100-15%wiatermined by NMR spec-
troscopy to bew-helical®. Secondary structure predictions suggest that the lirdeang a
continuousa-helix with the second-helix AS2 of HAMP1 and the first helix-AS1 of
HAMP2. Moreover, the linker is predicted to be in a coiled cWisual examination of the
linker, which we call the inter-HAMP region, reveals thaété is a hydrophobic groove
on its surface, formed by alanines (Fig. 1A). Taking thisimitonsideration, it is highly
reasonable to propose that the inter-HAMP region is a homedc coiled coil (Fig. 1B).
Molecular dynamics simulations show that the monomerierthtAMP from NpHtrll, as
well as the dimeric one, are stable. There is a notable fe@tuhe dimeric inter-HAMP
region, as there are longitudinal motions of protomerséndimer. We analyzed this effect
more thoroughly, determining the potential of mean forddfipfor longitudinal displace-
ments of protomers (Fig. 1C). The PMF shows that the systefersthe unsymmetrical
conformation with the longitudinal shift of 148 (of either positive or negative sign).
Thus, the inter-HAMP region is bistable.
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Figure 2. A) Computed probability of finding the projectiortioé NpHtrll second HAMP domain center of mass
on the membrane plane at the corresponding position, laidtbgetructure oNpSRII-NpHtrll 2:2 complex in a
proper scale. View is perpendicular to the membrane planeiriltied structure was symmetric, and the tilt and
the longitudinal shift in the inter-HAMP region have deveda later. Two regions with the highest probability
correspond to the two possible signs of longitudinal staftd are colored red and magenta, correspondingly, to
guide the eye. B, C) Two possible roles of the HAMP domain negibphototactic signal transducers. Model
of the sensory rhodopsin transducer 2:2 complex is in yeleith the protomers shown in different shades.
Equivalent positions are marked on the inter-HAMP regiontheftwo protomers as black triangles to facilitate
the perception of the longitudinal shift. B) Change of thedibudinal shift sign results in a distinct conformation,
in which the kinase control module (KC) is displaced on avetayg.6 Ax2~17A along the membrane plane
(second conformation is in white). Thus, the signal may besttaoed through the inter-HAMP switching. C)
Asymmetry of the HAMP domain region may facilitate the contacith whe adjacent transducers or receptors.
Otherwise, these contacts would be impaired by bulky semsmgopsins residing in the membrane. Reprinted
with permission from Gushchin et al., Biochemistry 50, 578,5811. Copyright©) 2011 American Chemical
Society.

4 Model Including HAMP Domains

To determine whether the inter-HAMP region will keep its pedies in presence of the
flanking HAMP1 and HAMP2 domains, we expanded the model ttugeeboth of them.
Initially prepared symmetric structure develops asymyndtiring the simulation, with
a longitudinal shift arising in the inter-HAMP region. Thubke properties of the inter-
HAMP region are conserved in physiological environment. rétwer, the inter-HAMP
region affects HAMP domains, rendering them asymmetrazsbpposed to largely sym-
metrical models observed for sole HAMP domdin3he longitudinal shift in the inter-
HAMP region seems to not affect the orientations of the HAM¥hdins, only displacing
one relative to the other in the membrane plane. Analysifi@fdisplacement reveals a
shift of 8.6 + 3.5 A (Fig. 2A), which is a considerable value for the system.

5 Discussion

Signal transduction through HAMP domains is still not verglunderstoofl Here, we
present the evidence, that in phototactic signal transdutige region adjacent to HAMP
domains (the inter-HAMP region) possesses interestingegoti@s and is able to affect
the HAMP domain structure. Asymmetry generated by the iH#@&MP region leads to
displacement of HAMP2 in membrane plane relative to HAMPhisTaises an interest-
ing possibility of signaling through the inter-HAMP swiiolg (Fig. 2B). Such switching
would generate a very large displacement of the cytoplaparic Another possible role of
the HAMP domain region is to serve as a rigid mechanical jbiat allows at the same time
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the cytoplasmic parts to come close enough to each otherrot@her-order oligomers
(Fig. 2C). Such oligomers are generally considered to bessary for proper signaliig
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The energetics of binding of the steroid progesterone (P&®) 53-androstane-3,17-dione
(5AD) to the Diels-Alderase antibody 1E9 or the EE{ Trp/ ArgH'%0Trp 1E9 double mutant
(1E9dm) has been investigated using the molecular mechaaisse®-Boltzmann surface area
(MM-PBSA) method. The results have been compared to the eferder the complex of
PRG with the anti-progesterone antibody DB3. The steraididiess strongly to 1E9 than to
DB3 but the mutation improves the steroid affinity, in agreemetiit experiment. Although the
complexes formed by PRG with 1E9dm and DB3 have similar affittiybinding mechanisms
differ. Reduced van der Waals interactions for PRG-1E9dreusePRG-DB3 are energetically
compensated by an increased solvation of polar groupsy garttrasting previous conclusions
based on structural inspection. Our study illustrates ithatdifficult and can be misleading
to deduce binding mechanisms from structural models alonerefdre, taking into account
solvation effects as in MM-PBSA calculations is essentia@lticidate molecular recognition.

1 Introduction

The anti-progesterone antibody DB3 shares 91% sequencttydio the Diels-Alderase
antibody 1E9. However, 1E9 binds progesterone (PRG) ahdritirostane-3,17-dione
(5AD) weakly compared to DB3. Recently Piatesil! have shown by site-directed mu-
tagenesis and binding studies that only two mutations apgned to interconvert the bind-
ing specificity of 1E9 and DB3. The L&A Trp/Arg™1%°Trp 1E9 double mutant (1E9dm)
binds both steroids with nanomolar (nM) affinity and achgttee binding specificity of
DB3 for a panel of structurally and configurationally dististeroid molecules. Recently
the crystal structures of 1IE9dm complexed with proges&ei(®RG) or B-androstane-
3,17-dione (5AD) have been determined by Verd@i@F. To elucidate the mechanism
of the cross reactivity of 1E9 and 1E9dm with PRG and 5AD idiig solvent effects,
we have conducted molecular mechanics—Poisson-Boltzisariace area (MM-PBSA)
calculations studying the contributions arising from eliéint molecular interactions to the
binding affinities for different complexes.

2 Materials and Methods

The initial coordinates for our simulations were obtaineahf the X-ray crystallographic
structures of the 1E9dm Fab complexed with progesterond (ED 205Y), and 5AD
(PDB ID: 205Z) determined to 2.08 and 2.40A resolution, respectively The proteins
were described using the Amber ff99SB force field. The ligandre assigned generalized
amber force field (GAFF) atom types, and AM1-BCC atomic chargglculated with the
antechamber module of Amber molecular dynamic package. Backward nurativere
performed manually to study the binding of steroids to thiel wipe antibody 1E9. The
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configurations were generated via simulations of the coxeglén explicit water. A 10
ns simulation at constant pressure was conducted. Cotedimgere saved after every 10
ps, resulting in 1000 configurations for each simulationwkeleer, only 40 configurations
were used to estimate the entropic contribution to the bipétiee energy.

2.1 MM-PBSA Calculations

The most common receptor-ligand (R-L) association reaéigoverned by the following
equation:

R+ L +— RL (1)

where all the reactants are assumed to be in aqueous soluliea binding affinity is
determined from the free energies of the receptor (R), tyenti (L), and the complex
(RL):

AGhying = Grr — (Gr + GL) (2)
The free energy of each species (R, L, RL) is estimated from
G = (Emm) + (Gpol) + (Gup) — T (Snvm)- ©)

Here, By is the molecular mechanics gas-phase energy of the spékjgsis the polar
contribution to the solvation free energy of the speciesimaded from the solution of the
linear Poisson-Boltzmann (PB) equatiof (1 rs), Gnp is the non-polar solvation free
energy, estimated from the solvent accessible surfacq 88A) of the specied] is the
absolute temperature of the system, &g, is the entropy of the species, calculated from
a normal-mode analysis of harmonic frequencies estimatékeamolecular mechanics
(MM) level. The gas-phase molecular mechanics enéigy; can be expressed as

EMM = Ecov + Eelec + EvdWa (4)

whereE..,, F.ec, andE,qw denote the contributions from covalent, electrostatid,\am
der Waals interactions, respectively. The contributisasfnonpolar solvation, (G ), was
evaluated from

an = fyAsasa (5)

where A... is the solvent accessible surface area (SASA) ang 0.023 kcal.mol!
A—2. The SASA was estimated using a probe radius offl.Zhe averages in Eq. 3 are
calculated from an ensemble of molecular configurationsrtéélom a molecular dynamics
simulation to capture the effects of motion.

3 Results and Discussions

In order to understand the mechanisms underlying the bjnaliprogesterone (PRG) and
55-androstane-3,17-dione (5AD) to the antibodies 1E9 anditr&n energetic analysis
using the MM-PB(GB)SA method was conducted. The structfiteeolE9dm-PRG com-
plex showed an average RMSD of 1 Afand an average RMSD of 1.56was observed
for the 1IE9dm-5AD complex. The energetics of the binding R3Pand 5AD to 1E9 and
1E9dm obtained from the MM-PBSA calculations are shown im Ta Overall, PRG binds

58



more strongly to 1E9 and its variants than 5AD. In generalldigest contribution favoring
binding is the van der Waals interaction between the bingeugners, being in the range
-40 kcal/mol to -43 kcal for PRG and -37 kcal/mol to -39 kcadlrfor 5AD. The nonpolar
interactions with the solvent including the contributioarh the hydrophobic effect make
a contribution of -3.7 kcal/mol for PRG and in the range -Z:alkmol to -3.6 kcal/mol for
5AD.

PRG 5AD
L WT dm WT | dm
Contribution
ABee. | -1.6(0.1)| -9.3(0.1)| -9.4(0.2)] -10.7(0.1)
AByqw | -39.5(0.2)| -42.7(0.1) | -36.8(0.2)| -38.6(0.1)
AG,, | -3.7(0.01)| -3.7(0.01)| -3.5(0.01)| -3.6(0.01)
AGpo | 225(0.2)] 28.2(0.2)] 28.2(0.3)] 26.8(0.1)
AGY® | 18.8(0.2)| 24.5(0.2)| 24.7(0.3)| 23.2(0.1)
AGY) e | 20.9(0.2)| 18.9(0.2)| 18.8(0.3) 16.1(0.1)
“TASum | 14.2(0.9)| 15.4(1.2)| 15.5(1.1)| 15.0(0.8)
AGpma | -8.1(0.9)] -11.7(1.2)| -6.0(1.1) | -11.1(0.8)

Table 1. Free energy terms (kcal/mol) for the binding of 1E%avds to progesterone (PRG) and-&ndrostane-
3,17-dione (5AD). Standard errors of the mean are given ianibesis.

(@) AGsotv = AGnp + AGpol, P AGpol,elec = AGpol + AEelec

To understand the difference in binding mechanisms betwéda-1E9dm and PRG-
DB3, we have calculated the shift of binding free energiebthair individual components
for PRG-1E9dm with respect to PRG-DB3, by comparing ourltegar 1LE9dm and the
results from a study for DB3 by Pigkyla and Nordmah as shown in Tab. 2. For PRG-
1E9dm the solutes remain more strongly exposed to the sathan for PRG-DB3. On

Component Value
AAFEqec +8.2(0.3)
AAFEqw +4.8(0.3)
AAG, +1.0(0.01)
AAG01 -13.1(0.3)
AAGgoly -12.1(0.4)
AACT’pol,elec '49(04)
AAGing +13(02)

Table 2. Free energy terms of the PRG-1E9dm complex relatieetd®RG-DB3 complex*® in kcal/mol.
Standard errors of the mean are given in parenthesis.

(@) AAG = AGHE9dm _ AGPB3 | () Free energy terms for the PRG-DB3 complex were obtained from Ref. 5.
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the one hand, this leads to weaker van der Waals interadiemseen the binding partners
and increased unfavorable nonpolar contributions to thdibg free energy, stabilizing
PRG-DB3 over PRG-1E9dm. On the other hand, the strongeatsofvof polar groups

stabilizes the PRG-1E9dm over the PRG-DB3 complex. Botceifflargely compensate
each other such that the net difference in affinity betweerlo complexes is small.

4 Concluding Remarks

Altogether, though the complexes formed by PRG or 5AD witlddfE and by PRG
with DB3 have similar affinity, the binding mechanisms arffedent. Decreased van der
Waals interactions observed for 5AD-1E9dm versus PRG-trE@dfor PRG-1E9dm ver-
sus PRG-DB3 are energetically compensated by an increaseatisn of polar groups.
These findings do not confirm previous hypotheses on the Iymlgbinding mechanism
based on structural inspectiér. This work illustrates that it is difficult and can be mislead-
ing to deduce binding mechanisms from structural modelfi®@tinding partners alone.
In contrast, taking into account solvation effects as dare kia MM-PBSA calculations
is essential to understand molecular recognition.
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Molecular simulations of biomolecules often reveal a complietupe of the their kinetics,
whereas kinetic experiments typically seem to indicate icdenably simpler two- or three-state
kinetics. Markov state models (MSM) provide a tool to linkweén simulation and experi-
ment, and to resolve this apparent contradiction.

1 Introduction

Molecular simulations of large biomolecules typicallyeala complex picture of the free-
energy surface with many kinetically relevant st&tésComplementary to this, advanced
experimental techniques allow probing the equilibriumektios of biomolecules directly.
This can either be done by perturbation techniques, sudmagsetrature or pressure jump,
or by equilibrium experiments in which the measured sigaautocorrelated to obtain
kinetic information, as e.g. in fluorescence correlatioacspscopy. These measurements
can be described by dynamical fingerprints, i.e. densitieelaxation timescales where
each peak corresponds to an exponential relaxation prodassiany cases, single- or
double-peaked fingerprints are found, suggesting that adnthree-state model may pro-
vide a satisfactory description of the biomolecule stutifred

We sketch an approach combining Markov state models (MSNJ the simulated
dynamics with dynamical fingerprints, which allows addimegghe following questions:
(4) Is the largest relaxation timescales observed alwaysdaietfolding process?i) Can
a given experiment detect all relaxation processes thapraient in the dynamics of the
molecule? {ii) Are the processes observed in perturbation experimeatsaime as those
observed in equilibrium experiments? We illustrate ourifigd using a four-state model
of a protein folding equilibrium.

2 Theory

In MSMs of conformational kinetics, the conformational spaf the molecule is dis-
cretized intoN states. The kinetics between the states is described Isjttcamnprobabil-
ity ¢;; of going from a state to a statej within a time stepr, which are summarized in a
transition matriXT (7). The entire information of the kinetics of the system is eom¢d in
this matrix. In particular, each (left) eigenvecigiof the transition matrix represents one
of the kinetic processes of the system. For a detailed rewoiethe theory of MSM and
their application to the simulation of biomolecules see.Reind 3.

Kinetic experiments yield time seriggt), either of the observed signabirectly (per-
turbation experiments), or of the autocorrelation of tigmal (equilibrium experiments).
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Figure 1. Sketch of a protein folding equilibrium. The arromepresent possible transitions between confor-
mational states. Their thickness corresponds to the trangitobability. The yellow stars represent possible
chromophore attachment points.

From physical principles, we expect that in both cgs@s is a noisy realization of a sum
of multiple exponential functions

)= [ atn(tyeso (}) © 3 e <§) | M

v(t') is inverse the Laplace transform pft) and is called thelynamical fingerprint

The approximation in Eqg. 1 results from the fact that any expental signal is time-
discretized, and that in an MSM-representation of the iigsehe number of processes
which contribute to the dynamical fingerprint is limited teetnumber of stated’. The
relaxation timescales; of the system are linked to the eigenvalugsof the transition
matrix byt, = —7/In \; One can derive analytical expressiofior the amplitudesy;

of equilibrium experiments,* = (a, ll->2 and of perturbation experimemﬁ(o)’“ =

(a,1;) (p'(0),1;). p’(0) is the excess probability density with(0) = p;(0)/7;, wherer

is the equilibrium densitya is the observable vector which associates each states in the
MSM with a signal strength of the observalle

3 Model System and Results

Each of the secondary structure elements of the proteimnfplohodel in Fig. 1 can fold
and unfold in a single distinct step. This leads to a MSM ofdtveformational equilibrium
with N = 4 metastable states. The transition probabilities are septed by the thickness
of the arrows in Fig. 1. None of the eigenvectors of the MSMy(Ria) reflects our notion
of folding. Hence, the folding process may not be contaimeal kinetic process and can
thus not always be associated with a single folding rate.

The yellow stars in Fig. 1 mark possible chromophore attamitmoints. We choose
our observable vectors to resemble FRET constructs, icechwwomophores attached to the
molecule with strong signal if they are close to each othegkisignal if they are further
apart (Fig. 2.c).
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Figure 2. Markov model and experimental setup for the prolitirig model.
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Figure 3. Amplitudes of the dynamical fingerprints of a variefyexperimental setups for the protein folding
model. (A) Equilibrium experiment, dynamical fingerprint oethutocorrelation function of observablesb,
andc. (B) Perturbation experiment, dynamical fingerprint of theajesignal of the observabtecombined with
initial distributionsp: (0) andp2(0), respectively.

Fig. 3.A show the dynamical-fingerprint amplitudes of eifpiilm experiments using
each of the three possible observable veciois, andc. The scalar product of observable
vectora with eigenvectors$; andly, is close to zero and therefore the corresponding exper-
iment is insensitive to these processes. This is in line thighintuition that an experiment
in which the chromophores are attached at site 1 and 2 will & sensitive to conforma-
tional changes of the-helix. Conversely, observabltehas little overlap with eigenvectors
15, and the corresponding experiment is insensitive to thistid process representing the
a-helix folding. Only with observable all relevant kinetic processes can be observed.
This shows that a single experiment will typically be instws to some of the processes
present in the system and explains why kinetics appear sitapler in experiments than
in simulations.
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A perturbation experiment cannot reveal a kinetic procesishwvould be invisible in
an equilibrium experiment with the same observable. Thiaisily seen by considering
that the amplitude is given a8 ®”** = (a,1,) (p’(0), 1;). If the first factor is zero, i.e. the
process is not detectable in an equilibirum experiment,cthreesponding amplitude in
the fingerprint of the perturbation experiment will also leex- independent of the initial
distributionp(0). However, not all kinetic processes are involved in relgranparticular
initial distribution to the equilibrium distribution andiérefore the second factor can be-
come zero, too. This is shown in Fig. 3.B, wheyg (0),13) ~ 0 and (p5(0),14) = 0,
respectively (see also Fig. 2.a and see Fig. 2.c). Constyguthiese perturbation experi-
ments are insensitive to the third and fourth kinetic preaespectively, even though they
are conducted with an observable which sensitive to allgsses in the system.

Given a MSM of the conformational kinetics of biomolecular approach can also be
used to suggest optimal attachment points for the chronregh
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Force-field optimization remains an important endeavor for rieglehemically diverse sys-
tems at atomistic resolution. It also remains a time-consumingisoale process involving
multiple steps and data transferal. One goal of our researithdevelop accurate and reliable
parameters in a reasonable time and as error free as posdibig. We have designed two mod-
ular scientific workflows, Wolf Pack and GROW, that incorporate our beliefs for how quantum
mechanical (QM) and experimentally gained knowledge shoaltlénsferred to molecular me-
chanics (MM) models.

Herein, we have applied WalfPack to develop parameters for thiopeptide antibioticgjraht
products that bind to a ribosomal protein-RNA subdomain. Fastration we present the per-
formance of this force field when used in a molecular dynamics)YMBulation of thiostrepton
(thio) immersed in an organic solvent mixture.

1 Introduction

1.1 Force Fields

Molecular force fields have a rick60-year history, with the theory’s foundation coming
from 1930s vibrational spectroscopy. However, it wasniilithe 1970s that their utility
and popular use as a research tool took a strong hold. Taatag fields continue to be an
important part of computational research, and there eaistsiety of published parameter
sets? whose implementations range from atomistic to mesosceésiigations.

Force-field development is a time consuming process imnmglaultiple steps and data
transferal, and is the basis of any meaningful applicatype- study using MM theory. To
assist us in developing reliable molecular models, we aveldping two scientific work-
flows for force-field optimization (Wolf Pack and GROW) that incorporate our beliefs
for transferring QM and experimentally gained knowledgd/id models. GROW's pur-
pose is to optimize nonbonded parameters for reproducigtt@xperimental data via
MD simulations. Wol§ Pack’s purpose is to optimize intramolecular parameteirsgus
QM data, by allowing the user to steer the optimization psePeAn important part of
Wolf, Pack is that parameters are developed in a systematic asdtn fashion. This
is reflected by the generation of a QM molecular databaseshwhirrently contains 335
molecules and 1237 potential energy curves for variousadsgof freedom.

8please see Ref. 1 for a short summary.
bgoth Wolfy Pack and GROW are able to optimize partial atomic charges Ing déferent approaches.
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The bio-computational chemist community primauigesforce fields in their research
investigations, with a small proportion of groups devehgpthem. Thus, most of the
simulations are on “traditional” systems involving startiamino and nucleic acids, where
the force fields are well established. By providing uservaitrobust parametrization
tool, we hope to increase the availability of reliable pagters for modeling new diverse
biomolecular (e.g. lipids and natural products) and chah{i.g. ionic liquids) systems.

1.2 Thiopeptides

Naturally occurring thiopeptides, such as thipinhibit bacterial protein biosynthesis by
binding to a cleft formed by the L123S ribosomal subunit. Currently the compounds are
used only in the treatment of animals. Understanding theienular properties and activ-
ity better, one can work towards designing a novel compobtatidan be used in human
therapy. Experimentalists have explored the structureese compounds and their bind-
ing using X-ray, NMR, and chemical modification approaéh&sviodeling these natural
products is challenging for computational chemists usorgd-field based methods; like
many natural products they have chemical functionalitreslzonding that are not present
in traditional protein, DNA, and RNA macromolecules. Thas,alternative force field is
needed whose parameters cover the unigue functionalitteBmhiopeptides.

Herein we briefly discuss the building and optimization of awdel for thio. The
Wolf, Pack workflow allowed us to optimize all of thio’s internalgiees of freedom,
resulting in a robust force field for modeling thiopeptiddanally, structural results of
MD simulations involving thio immersed in an organic solvare compared to an NMR-
obtained structure.

2 Methodology

Thio was separated into its constituent residues as definBdid and coworkers (Fig. %))
each non-amino acid residue was capped using the nearesiohal group, and termi-
nated using a methyl group. The residues were optimizedyu$ii6-31G(d) theory level,
and electrostatic potentials were subsequently compused) [CHELPG. A RESH fit
was performed via R.E.B: using a 0.01 weighting factor to obtain charges compatible
with Parm99SB. Initial parameters for the standard amind eesidues were taken from
Parm99SR?, while the non-standard residue parameters were taken@®AaRF'3, Using
Wolf, Pack a second parameter set was optimized for modeling thio rafdon, and
methanol. Since we plan to model thio bound to the ribosones;hvose to use Parm99SB
Lennard-Jones parameters instead of optimizing them WR@QW. For further method-
ological information, please see Ref. 2.

Both parameter sets were used in separate 20 ns isotheyoharic MD simulations
performed at 300.15 K. 1-4 electrostatic and nonbondedrgcédctors were set to one
during the parametrization and MD simulations. All MM-bdsad QM calculations were
performed using AMBER and GAMES$®.

3 Results and Discussion

Our initial MD investigation was done using the Parm99SBREAarameter combination.
Using such a combined parameter set is a plausible route edrdronted with an incom-
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Figure 1. Thiostrepton structure color coded accordingsidue®. Key atom types within the tail are shown in
parenthesis.

plete force field. However due to the developmental diffeesrbetween force fields, such

a “Frankenstein” approach can lead to untrustworthy resulitimately we wanted a force
field that was more reliable and whose errors could be tradkedh and corrected more
easily. Thus, we used WelPack to optimize thio’s intramolecular degrees of freedbm.
total, 35 bonds, 89 angles, and 153 torsions, using 18 atpastywere optimized. Over
500 potential energy curves(0,000 QM data points) were used in the parameter training
and transferability testing.

To partially validate the parameters, we created a modapgmduce the condition of
the thio NMR experimefit by immersing thio in a 5:1 chloroform:methanol mixture.dw
MD simulations were performed using the Parm99SB/GAFF awtfiWPack optimized
force fields. While the Parm99SB/GAFF parameter set perf@degjuately, as seen in
Figures 2a and 2b the optimized force field reproduces the NiviRture better. However,
a close examination of the torsion values and dynamics mithio’s tail residues revealed
some questionable behavior by the optimized force field. &ggamined the tail’s torsion

Wolfy Pack Initially Optimized Wolfy Pack Reoptimized
Angle V, Vo V3 V4 V, Vo V3 V4
C2-C2-CP-N|| -0.25 -1.56 0.00 0.00| -0.25 -1.56 0.00 0.00
C2-C2-CP-O|| 0.25 -1.56 0.00 0.00] 0.25 -156 0.00 0.00
N-C2-CP-N 1.00 -2.00 0.00 0.00f 050 -1.20 0.10 0.00
N-C2-CP-O || 0.00 0.00 0.00 0.00/ -0.50 -1.20 -0.10 0.00
C2-C2-N-CP|| 0.00 -0.88 0.00 0.00f 0.00 -1.00 0.00 0.00
C2-C2-N-H 0.00 -0.88 0.00 0.000 0.00 -1.00 0.00 0.00
CP-C2-N-CP|| 0.00 0.00 0.00 0.000 0.25 0.00 0.00 0.15
CP-C2-N-H || 0.00 0.00 0.00 0.00/ -0.25 0.00 0.00 0.15

Table 1. Key coupled torsion parameters that were optimizeth@meling thio’s tail (Fig. 1).
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parameters and found an alternative solution for coupleaipeters describing the rotation
about C2-CP and C2-N bonds (see Tab. 1). A third MD simulatias performed and
provided improved structural agreement to the NMR data.(E@. Note that we also
obtain better agreement in the Ring 2 structure, which dosiresidue that is dependent
upon these reoptimized parameters (Fig. 1).
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Figure 2. Root-mean-squared deviation of the thiostreptodeingith respect to the NMR structure versus time,
using the following force fields: (a) the Parm99SB/GAFF combion, (b) the initial Wol§ Pack optimized, and
(c) the Wolf, Pack reoptimized.

4 Conclusion

In our pursuit to develop reliable force fields we have desitwo modular scientific
workflows, Wolf, Pack and GROW, that optimize intra- and intermolecular ipatars.
Herein we report the utilization of WalfPack to develop parameters for thio, a thiopeptide
antibiotic that binds to the ribosome. Thiopeptides ardlehging for force fields and their
development due to their large sizes and diverse chemicapasition. By using Wolf
Pack, one can efficiently generate the QM target data, devwbpartial atomic changes,
and steer the parameter optimization, as the user deemspajgpe, for their model. As
shown with thio, the user can systematically trace force-fegrors back to individual
parameters, which can be adjusted to improve MM and MD result
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Four fructose-1,6-bisphosphate aldolases obtained bygtéu evolution show significant differ-
ences in the thermostability, although the differences queace and structure are only minor.
This raises the question as to what is the molecular origihefttermostabilization. Here, we
apply Constraint Network Analysis (CNA) to link the mechaaligidity of a protein structure
to its thermostability. The analyses reveal structural wemiks of the aldolases. Mutations that
lie within these weak spots are found to reinforce the ndtwbdnon-covalent interactions and,
thus, increase the protein’s thermostability.

1 Introduction

Most proteins have efficiently adapted towards the conalitiof their particular environ-
mental niché. One major requirement is the adaption towards temperaRn@teins are
usually stable and active under a wide temperature rangehvgimade possible by ver-
satile mechanisms Still, there is a need of adapting proteins towards specdfiwitions

of industrial processes. Fructose-1,6-bisphosphatdasidqFBP-aldolase) (Fig. 1) has
been restricted for use in synthetic organic chemistry duéstlow thermostability. The
enzyme belongs to thex(s)s barrel family* and cleaves fructose-1,6-bisphosphate into
dihydroxyacetone phosphate and glyceraldehyde-3-plaosSpiBy means of directed evo-
lution, Haoet al. engineered aldolases with enhanced thermostabilifyhe identified
aldolases 1-44F2, 2-15B2, 3-4C10, and 4-43D6, hencefefthred to as Al, A2, A3, and
A4, respectively, show only minor differences in sequenua structure (see Tab. 1) but
display significant differences in the temperature wherpé&@ent of the proteins are still
active (Iso) of up to 9.3 K.This raises the question as to what is the molecular orijin o
the thermostabilization of these enzymes.

2 Methods

The program Constraint Network Analysis (CN&)was used to analyze A1-A4 in terms
of structural determinants of thermostability. Initiatiire protein is modeled as a constraint
network, where atoms are represented as vertices (jointsfavalent and non-covalent
bonds are represented as edges (constraints). The mealhégidity (structural stability)
of proteins is largely determined by non-covalent inteoad, i.e. hydrogen bonds, salt
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Figure 1. Quaternary structure of FBP-aldolase A2. The vegak probability is color-coded from dark blue
(0%) to red (100%). Mutations from aldolase mutant Al to A2sdrewn in red surface representation.

1 A1l A2 A3 A4

Al | 522 - 0.25 0.19 0.19
A2 | 57.6| 97.8 - 0.25 0.21
A3 | 59.3| 97.6 97.8 - 0.13
A4 | 61.7| 96,5 97.8 98.3 -

Table 1. T5p values, all atom RMSD, and sequence identities of FBP-af#oinutants Al-Aal,

[a] The all atom RMSD (in&) is given above the empty diagonal, the sequence identityoi below the empty
diagonal.
[b] In K.

bridges, and hydrophobic interactiSnglere, hydrogen bonds are ranked according to an
energy function, and only hydrogen bonds with an energywetathan -0.1 kcal mol*
are initially retained in the network. Next, the constraietwork is analyzed with the
software FIRST in order to determine the local network ritgid

In order to link the mechanical rigidity of the protein struie to its thermostability,
the thermal unfolding of the protein is simulated by grausgmoving hydrogen bonds
from the network in the order of increasing strerigth This is based on the idea that
stronger hydrogen bonds will break at higher temperatuvas tveaker ones. During the
thermal unfolding, the protein develops from a largelydigtructure at low temperatures
to a mostly flexible one at high temperatures. When analyziagrascopic properties of
the network during the thermal unfolding by indices fromqméation theory8, two phase
transitions are observed (Fig. 2): The first one describebtbak-down of the completely
rigid network into a number of rigid clusters, while the sedmne describes the loss of
the residual rigidity and, hence, the transition to a nekwbat is completely flexible. The
second transition corresponds to the folded-unfoldedsitian in experimental protein un-
folding’. Thus, the phase transition temperatufg) (associated with it can be related to
the experimental melting temperature or, if this is not e, to7s,. Here, T, is aver-
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Figure 2. Cluster configuration entropy curves of aldolasggred), A2 (green), A3 (blue), and A4 (black)
showing the thermal unfolding of the protein structures. @hset of the largest change # determinesl’,.

aged over an ensemble of 125 conformations generated layoafi-molecular dynamics
simulation of 5 ns length.

3 Results and Discussion

Differences in the computed phase transition tempera{ux&$) of the four aldolase sys-
tems in comparison to thATxo-values are shown in Fig. 3. From a qualitative point of
view, all three mutants A2, A3, and A4 are computed to haveghdri phase transition
temperature than Al, and A4 is correctly identified to be nibezgmostable than A2. In
contrast, the computed thermostability of A3 is too low camgol to A2. Still, we note that
ATxsp, 43— 42 amounts to only 1.7 K, which is close to the uncertainty of¢cbmputations

A1-A2 A1-A3 Al1-A4

mutant

=)

©

IS

N

AT, K]/ ATsy K]

o

Figure 3. ExperimentalT5o (blue) and computed\T}, (orange) for mutants A1-A4. Th&so andT), values
of Al are used as a reference point.
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of AT, of 1.2 K. From a quantitative point of view, all computed cpas in the thermosta-
bility fall short of the changes determined by experimerdwdver, this will not influence
any further analyses because the absolute magnitude ohtse gransition temperature
depends on an empirical scalfgvhich is identical for all four systems.

Next, going from Al to A2, two mutations at positions 321 imtha and 321* in
chain b were investigated in more detail in order to undadsthe mechanisms of protein
structural adaptation that lead to higher thermostabilityportantly, these mutations lie in
weak spot regions determined by CNA (Fig. 1). These regiomsansidered the weakest
part of the proteins unfolding nucleus, and previous amaygmve revealed that thermosta-
bilizing mutations are often located in such weak spotgideed, molecular dynamics
simulations show that Met321 only forms one hydrogen bond between its main chain
oxygen and the main chain nitrogen of Gly344 Lys321,4, shows the same interaction
with Gly314,, but additionally forms a hydrogen bond with its guanidingiety either to
Glu317,, or to Asp32Q,,. This reinforces the network of non-covalent interactiansd,
thus, increases the protein’s thermal stability. SimylaMet321*,, is stabilized by just
one main chain hydrogen bond, while the equivalent residig321*4, forms an addi-
tional hydrogen bond with its side chain and, therefore trijoumes to the higher overall
stability of A2 compared to Al, too. Overall, these initialadysis demonstrate that CNA
can help understanding the influence of thermostabilizintptions by pointing to regions
where such mutations excert a pronounced effect.
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The computational effort of biomolecular simulations can lymiicantly reduced by means
of implicit solvent models in which the energy contains a teepehding on the surface area
or/and volume of the molecule. Although the analytical formsudta these quantities are known,
their practical implementation in a computer program is neigtbecause of arising numerical
instabilities. We propose a new approach to solution of pihidlem. Our approach has been
implemented in a C++ header-only template library, called POWERA, for computation of
the molecular surface, volume and their derivatives witheesfp atomic coordinates.

1 Introduction

In the last decade, great progress has been made in all-atopueer simulations of bio-
logical macromolecules, such as proteins and nucleic aliigsarticular, force fields were
optimized to provide better computational efficiency. Otieaative choice is the use of an
implicit solvent model, which permits elimination of manggtees of freedom associated
with the surrounding water molecules and ions. In this maithel simulated molecule is
treated as a union of balls, so that each such ball corresgoreth atom. The ball radius
is usually taken larger than the standard van der Waals \gluke effective radius of the
water molecule{ 1.4 A)L. In many currently used force fields, the effective solvatn-
ergy depends on the surface area and/or the volume of thisegeoal object 3. For some
simulation methods, such as Monte Carlo, it is enough to ketalevaluate the energy as a
function of the atomic coordinates. For others, like molacdynamics, evaluation of the
forces acting on the atoms is required. Hence, it is impot@mhave efficient algorithms
for computation not only of the surface area and volume tad af the derivatives of these
guantities with the respect to atomic coordinates as well.

2 Theory

Consider a molecule as a union of overlapping balls (atorhslifterent radii. Let us
select a single arbitrary atom. We denote its radiug bpd the position of its center hy
The buried area of its surface has a boundary that consistearcs resulting from the
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Figure 1. The surface of the selected atom (example). Theduariea is shown in white and light-gray. The
arcs forming the boundary are represented by the thick sakd.| The thinner solid lines (without arrows) are
geodesics. The dashed lines are straight segments that delong to the surface. (The figure is reprinted from
Ref. 4. Copyright 2011, Wiley Periodicals, Inc.)

intersection with the neighboring atoms. Consider a singlgour formed by: such arcs
as illustrated in Fig. 1. We denote the arcshyas, .. ., a,,, with the indices increasing as
one moves round the buried area in an anticlockwise manoesifaplicity, we ascribe the
same indices to the corresponding neighboring atoms ($pithgeneral, one atom may
obtain several different indices). The accessible surdiaea associated with the contour is
given by the Connolly formufa

S = [27r+2(goicost9i+1/)i — )| p?, Q)
=1

where the meanings of the angles ;, andé; are illustrated in Fig. 1. In the general case,
when a boundary of the buried area consists of several canteach such contour provides
an additive contribution to the total accessible area, lyHiowever, should be put into the
interval (0, 47p?) by subtractingtrp? the necessary number of times. The accessible area
derivative with respect to the positien of the center of théh neighboring atom is known
to be':

e; — g[(vi+1 - Vi) X ei]; (2

as _ %ﬂ(

P~ =P )
dI’Z‘ 2

wherep; is the radius of théth neighborp; = |r; —r| is the distance to ig; = (r; —r)/b;
is the unit vector pointing in the direction frotto r;, andv; andv,; are the end points of
the arca;. The analytical expressions for the volume and its dexieatare also availatfle
From the computational point of view, the most difficult pler is to construct the
contours of arcs and, in particular, to identify the conteenticesv, among all the other
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triple intersections of the atomic spheres. It can be efftbjedone by means of the so
called power diagraf’ that is defines as follows.

The power distance from an arbitrary poitn the three-dimensional space to atom
is defined agx — r;)2 — p2. The power cell of atoni is the set of all points, for which
the power distance to atoenis not larger than to any other atom. The collection of all
the cell defines the power diagram of the given conformatfoe molecule. The contour
verticesv; can be identified by the following two properties: (1) they din the edges of
the power diagram, and (2) they have zero power distancestattms, the cells of which
share the corresponding edge.

3 Numerical Stability

In Ref. 4 we proposed a recursive algorithm for building a eodiagram, in which the
atoms are added into the system sequentially, one by onéough very simple, this
algorithm is prone to numerical instability. Numerical plems can arise, in particular,
when four or more atoms lie approximately in the same plafdis(situation is typical
for the macromolecules containing aromatic rings). In taise, the corresponding power
cells often have vertices situated at very large distanocegpared to the dimensions of the
molecule. The coordinates of these vertices have low poggisvhich can cause serious
errors by the identifications of the accessible area bougglan the atom surfaces.

However, as we are interested only in the region near thelatedimolecule, there
is no need to construct the power diagram in the whole spate ntimerical stability
can be essentially improved if the construction is limiteddme fixed parallelepiped box
comprising the molecule. More precisely, we add to the sysi& auxiliary virtual atoms
that correspond to the six faces of the box. They are forntfined in such a way that
each individual atom of the molecules, taken alone in thesence, has the power cell
that coincides with the given box. This trick improves notyonumerical stability, but
also the efficiency of the algorithm, as it reduces the tatahiber of the cell vertices.

Another numerically unstable situation occurs when twb\eattices lies within a too
short distance from each other as compared with the machioe &ne cannot guarantee
that, in this case, the topology of the power diagram can beda@orrectly. As the atoms
are added into the system one by one, the easiest way to b@varoblem is to decrease
the radius of the new coming atom by some value that is smallgimto have a negligible
effect on the resulting accuracy but, on the other side,ficgntly large to provide a safe
distance between cell vertices.

The third source of the instability is a cell vertex with a rearo power distance to
the four surrounding atoms. That means that the surfaceli tifese atoms pass very
close to this point, so that their triple intersections aarive safely resolved. In principle,
this situation can be avoided, like before, by a small chawmigthe radius of the new
coming atom. However, in our current implementation, weset@nother solution, because
the construction of the power diagram is performed in a sgpanodule, whereas this
problem occurs at later stages of the computation proceddmen the power diagram for
the whole molecule is already given. We make use of the faadttthe power diagram
remains unmodified if all the squares of the radfiiare changed simultaneously by the
same value. This change, however, directly affects all patigances, including that
of the cell vertices. Thus, if the described situation inesl some atom, then, for the
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construction of the contours on the surface of this paricatom, we temporally increase
the p? values of the neighboring atoms by a small quantity thatesotiae problem without
noticeable effect on the resulting accuracy.

4 Implementation

We implemented our approach in a C++ header-only templatary, POWERSASA, in-
tended for computation of molecular surface area, volunaetiagir derivatives. Both float
and double precision are provided. As was shown in Ref. 4 software is essentially
more efficient in terms of CPU time, accuracy, and stabilitg@mparison with two other
packages, AStand ALPHASURE, currently used for exact computation of the same
guantities. More information about POWERSASA is availabtanf the authors on re-
quest.
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Prediction of Experimental Phi Values in Protein Folding
by Simulation with Knowledge-based Potentials:
B Domain of Protein A

Sebastian Kmiecik, Maciej Blaszczyk, and Andrzej Kolinski

Laboratory of Theory of Biopolymers, Faculty of Chemistry, Uniugref Warsaw
Pasteura 1, 02-093 Warsaw, Poland
E-mail: sekmi@chem.uw.edu.pl

Here we highlight our recent studies which showed that sitimmaf protein folding process,
with the use of knowledge-based potentials and reducedseptation of the polypeptide chain,
can be a useful method in prediction of experimental Phi valépart from providing hints for
experimental design, the simulation method (by deliverinigttary of conformations) enables
interpretation of the Phi values. The interpretation is a-trivial task, especially as the obtain-
ing of reliable Phi values is not-trivial either. Here, wegent a protein chain mobility profile,
from simulation of B domain of protein A, consistent with a dietd Phi value analysis.

1 Introduction

Our recent works demonstrated the usefulness of proteitinfplsimulation with knowl-
edge based potentials for structural characterizatiohefdlding process and denatured
state ensembte®. Such a force-field approximation together with approxiorat of pro-
tein chain representatibiseem to be a useful tool for qualitative studies of proteldify
dynamics of large proteins (not accessible to all-atom ldkr Dynamics - a classical
simulation method).

Experimental characterization of protein folding dynasnitose to atomic resolution
remains a big challenge. The detailed characterizatiomtifeefolding process is diffi-
cult for small proteins and usually impossible for largelneTonly experimental technique
sufficiently close to atomic resolution is a protein engnimag method called Phi value
analysis. The method sometimes leads to misleading resedfgires much effort (exten-
sive mutation scanning is needed) and reliable results rakpected only under certain
conditions.

Giving some hints on the involvement of a particular resglimeprotein structure for-
mation, Phi value analysis doesn’t provide complete infttiom on three-dimensional
structure of transient conformers. In the past decaderprattion of the experimen-
tal results leading to structural modelsecame possible thanks to simulation techniques
(mainly all-atom Molecular Dynamics) utilizing experimahdata and/or knowledge of an
experimental (folded) structure.

2 Folding Chain Mobility of B Domain of Protein A and its
Correspondence to Phi Values

Recently, while testing the hypothetical mechanism of enapin action, we described
in detail the folding of B domain of protein A The results of this de novo simulation
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Figure 1. Upper panel: folding trajectory fragment of B domafrprotein A (as a function of RMSD from
native) together with example conformations from denaturedi rmative like ensemble. Lower panel: profile
of the protein chain mobility (marked with the line) superimpd®nto Phi values data. The chain mobility is
shown as (1-MSD/300), where MSD is a mean square displacerheaich residue (average distance a given
residue travels along the folding pathwéypPhi values where marked in green and red according to dematur
concentration (0 and 2M GdmCl) together with error Bars
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(not using any information about the native structure ngrexperimental protein-specific
data) appeared to be in perfect agreement with the detatiliechRie analysi& This result
is quite remarkable taking into consideration: (1) lack tiizing any experimental data
(unlike most of the studies so far), (2) other simulatiorulss- not always agreeing with
the experimerftand (3) coarse-grained approximations of the CABS modet¢tdield
and protein representation).

Among the paradigm systems of protein folding we studiedaspthe transition be-
tween the denatured and native like ensemble for B domainatéim A seem to be the
easiest to happen along the folding trajectory. Multipdasitions from misfolded (mostly
highly expanded) conformations (around 8-11 Angstromsiftioe native) into native-like
(around 5-2 Angstroms from the native) can be observed irasoreable computational
time (in tens of minutes on a single CPU, see the upper parbkédfig. 1).

As can be seen in the lower panel of the Fig. 1, there is a gowdsmondence between
the protein chain mobility and Phi values — high Phi value®easmite with low mobility and
low Phi values with high mobility along the folding simuiati.

High Phi values appeared to be also very well correlated thighmost frequently
formed ternary interactions along the folding simulatiéBaomain of protein A (see the
Fig. 2C in the Ref. 3). Frequency of contacts maps, derivenh fihe simulation trajecto-
ries, enable easy interpretation of the Phi vatumsthe level of particular residue-residue
interactions, as we showed also for the other paradigmmgsté protein folding 22

It is worth noting that the Phi values reflect the degree afcstre nativeness around
the mutation site in transition state: Phi values close to mmplies that the local struc-
ture around the mutation site is relatively unfolded (nawire), if close to 1 implies the
similar structure as in the native state. The protein chaibility measured as MSD (see
description of the Fig. 1) reflects local structure invohesrnin any interactions, not only
the native. Thus, the chain mobility profile is more strafgiward measure of any struc-
ture formation in the particular region and gives the opputy for studying impact of
non-native interactions on observed Phi values.
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Coarse-grained Protein Modeling: Dynamics, Folding
Pathways and Mechanical Unfolding

Andrzej Kolinski, Maciej Blaszczyk, and Sebastian Kmiecik
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Pasteura 1, 02-093 Warsaw, Poland
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Coarse-grained protein modeling tool, CABS, is used in medtessmodeling of protein dynam-
ics. It is demonstrated that the stochastic (Monte Carlopdyins, combined with all-atom re-
finement of the coarse-grained structures follows observeaperiments folding pathways of
small proteins. The model is also used in model studies of cbajeassisted protein folding.
It is shown that Iterative Annealing Mechanism of chapemattion, where periodic distortion
of the polypeptide chains by non-specific hydrophobic etgons can promote rapid folding
and leads to a decrease in folding temperature. It is also detnated how chaperonin action
prevents kinetically trapped conformations and modulatesotbserved folding mechanisms
from nucleation-condensation to a more framework-like. imthe CABS model is used in
simulations of mechanical unfolding, providing new ways faterpretation of Atomic Force
Microscopy experiments.

1 Introduction

Genomic projects provide huge number of protein sequeroggerimental determination
of protein structures, while very successful, stays wetliihe the sequencing — at the mo-
ment the number of known structures is about 75000. Knovdexfghree dimensional
structures of protein and protein-protein and proteinlgin@cids assemblies is crucial for
understanding the molecular mechanisms of life, and caresdty for the rational drug
design, modern biotechnologies, etc. Fortunately, thehnoleaper and fastém silico
structure determination is now possible for a large fractbknown sequences. Compar-
ative modeling is the most accurate and the most advancdibthe©Obviously, with the
increasing number of the high accuracy experimentallyrdeted structures the range of
application of comparative modeling will increase. A mamaightforward, template-free,
structure calculation of new folds is now possible only felatively small and topologi-
cally simple proteins, although there is a steady progretisis area.

By many years theoretical studies of biomacromolecules h&en guided by a well-
defined paradigmfrom sequence — to structure — to function Recently, an extension
of this paradigm becomes evident. More and more researtiyarspredict and describe
the dynamics of biomacromolecules, especially proteimefeBsor Harold Scheraga and
his coworkers are among the leaders of this trend. It becevitesy recognized that most
of protein functions (enzymatic action, recognition, sitymg, transporting, etc.) could not
be fully understood without a clear reference to their dyicazontext. Thus, the current
paradigm of structural biology could be rephrasedfesm sequence- (via dynamics of
folding or biomacromolecular assembly pathways$tructure — through dynamics — to
function.
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2 Motivation

Due to the level of complexity, and the timescales invoheeputational study of protein
systems by means of classical (atomistic level) molecutaathics (or stochastic dynam-
ics) are now limited to small systems or/and to localizedfeonational changes. The
problem is summarized in Fig. 1, where the timescales obuardynamic processes are
compared with the timeframes accessible to various exgetiah techniques and a typ-
ical timeframe of large-scale molecular dynamics simatai To make the problem of
large scale protein dynamics computationally tractabie itecessary to reduce the level
of complexity™ and/or to apply more efficient simulation technique€oarse-grained
models of protein dynamics span a wide range of designs — masoscopic continu-
ous models (like Gaussian Network Models — GiNhrough united-residue models (like
UNRES' or CABS) to hybrid models, where some atoms are treated expliaithjije
the remaining atoms are combined into united afoPnhe first class of models (GNM)
are at present applicable to moderate changes of molecedtanetry, although the size
of the tractable systems is essentially unlimitefhe GNM-type models are intrinsically
structure-based. Conformational fluctuation can be caledlaround a starting structure,
usually the native-like state. United residue models enatidies of large conformational
transitions, while the system’s size limits depend on paldir designs of the force fields
and sampling schemes. The hybrid models bridge the gap éetike united-residue and
all-atom simulations. Sometimes the structure-basedifestare introduced into coarse-
grained (and all-atom) models via a specific simplificatibmeolecular interactions. For
instance, in so called Go-mod¥®nly the residue-residue interactions seen in the native
state define the protein energy landscape. Such approgimsgiem to work quite well
when applied in simulations of mechanical unfoldihgOn the other hand, the results of
numerous applications of Go-type models to protein folgiathways prediction should be
treated with extreme cautions — many proteins do fold thihaumn-native intermediates.

In this contribution we describe a couple of new applicaigoublished and unpub-
lished) of CABS model to prediction of protein dynamics. \Roeasly, CABS has been
successfully used in test predictions of equilibrium folglpathways of several small pro-
teing'®-15 including the atomic level reconstruction of folding neicl Here, we study
effects of external forces/restraints on folding/unfogldynamics and thermodynamics.

3 Coarse-grained CABS Model

CABS is a coarse-grained protein modeling tool applicabliatge scale simulations of
protein structure (comparative adé novomodeling) protein folding dynamics, mecha-
nisms of multimeric assembly and mechanisms of molecula@hinary’. Acronym CABS
stands for the names of united atoms (residues) employdtkineduced representation
of protein conformations (see Fig. 2a). The main chain of lgpeptide is represented
by the alpha carbon (Ca) trace, which is restricted to an nyidg fine-mesh (spacing:
0.61A) simple cubic lattice. Allowing some fluctuation of the carical Ca-Ca distances
the number of allowed orientation of Ca-Ca pseudobonds usletp 800. This safely
eliminates any effects of the lattice anisotropy. Additittyy the model backbone contains
pseudoatoms located at centers of Ca-Ca pseudobonds. Jumsart a definition of the
main-chain hydrogen bonds. The side chains are represbyted to two united atoms,
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Figure 1. Protein folding dynamics timescale resolutionswhfor experimental techniques and all-atom MD
(above the axis) and timescales of protein folding eventebthe axis}2.

corresponding to the beta carbons and to geometric certéng gide chains. The side
chains are located off-lattice and their positions are @effim the coordinate reference
system defined by the Ca-trace (see Fig. 2b), allowing foresatamer variability.

Motion of CABS polypeptide chains is simulated by means otlsastic dynamics
(Monte Carlo Dynamics, MCD) resulting from long series afdamly selected local con-
formational transitions. These include single Ca moves {dg. 2b) accompanied by
proper changes of the involved side chains (for clarity thanges of the flanking side
chains are not shown in Fig. 2b) and a larger scale transitischematically depicted in
Fig. 2c. The larger scale moves are attempted less frequédrattice representation fa-
cilitates very fast computations of conformational tréinsis leading to speed-up of the
model dynamics by about two orders of magnitude in respeathterwise similar contin-
uous space models. The sampling scheme of CABS dependsaficsppplications — for
structure prediction a multicopy method is recommendediifstance a variant of Replica
Exchange Monte Carlo), while for simulations of dynamicsrale copy algorithms are
easier to interpret (isothermal MCD, or simulated anngdlin

Force field of CABS is knowledge-based and consists of $italspotentials de-
rived from structural regularities seen in the known pmotsiructures. The interaction
scheme includes: generic short-range conformationalgmsiies mimicking the stiffness
of polypeptide chains, sequence-specific short-rangeq(fipur residues along the chain)
conformational propensities, a model of highly directiomain chain hydrogen bond and
the long-range (unbonded) pairwise interactions of the sighins. The side chain in-
teractions are context-specific (depend on mutual oriemtatf the interacting residues)
and thereby account for complex many-body effects (and araged implicit solvent ef-
fects). Details of the CABS force field design could be founcearlier publicatior’s
and the numerical data for the potentials could be seen andldaded from our website
(www.biocomp.chem.uw.edu.pl ).
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Figure 2. CABS model overview: (a) reduced representatipsitigle Ca kink move (c) schematic illustration
of larger scale moves of the MCD scheme.

The lattice design of CABS is quite unique. How does it corapaith more popu-
lar continuous space models? The representation of UNREGuite similar to that of
CABS, except the side chains which in UNRES are single estiti a form of ellipsoids
of revolution (two spherical united atoms in CABS). Contins representation of UNRES
enables classical molecular dynamics sampling, althotigtr gsometimes quite sophisti-
cated) sampling schemes were used by the Authors. The nfféredice is in the designs
of the force fields of both models. UNRES force field is phydiased, where parame-
ters of potentials are derived from corresponding atoretlieteractions. On contrary, the
force field of CABS is fully knowledge-based, attempting ¢éproduce the very complex
patterns of effective interactions in proteins withouerehg to specific atom-level origins.
Both approaches could be comprehensively argued for, démgon a context.

4 Modeling of Chaperonins’ Mechanism of Action

Molecular chaperonins are hollow protein chaperones. 4lsitype of a chaperonin (for
instance GroEL/GroES complex) can assists in folding ofynamious proteins. The exact
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mechanism of chaperonin action remains largely unknowrat Ehbecause difficulties in
experimental probing of protein folding mechanisms in sachnfined environment. Nev-
ertheless, it is known that for many substrate proteinsritexactions with the chaperonin
are non-specific and that the periodic changes of hydrophglaif the chaperonin interior
are crucial for its action. Basing on these observationsa sienple theoretical model of
the chaperonins’ mode of action has been propBselerative annealing model (IAM)
assumes that the periodic changes of hydrophobicity ofrtheriwalls of a chaperonin
complex lead to unfolding of misfolded proteins, consedjyesnabling them to reach the
proper fold. Using the fundamental theoretical concept*dfl we designed a simulation
scheme based on CABS. The idea is explained in Fig. 3. Theectwain is modeled as
a spherical object (cylindrical chaperonins were also fted, without qualitative differ-
ences in the results) with thick walls (or a vicinity of thellspof variable hydrophobicity.
In the basic state 9/10 of the simulation time the walls aegtirPeriodically (see the right
side of Fig. 3) the walls became hydrophobic, attractingeheapsulated protein chain
with the strength typical for the hydrophobic interactiavighin folded proteins (accord-
ing to the CABS force field).

Simulation time

| | >

chaperonin
cycle

2 - the walls of the model chaperonin

attract a protein chain
(hydrophobic attraction)

- the model chaperonin
is inert to a protein chain

Figure 3. Chaperonin model (see the text).

Chaperonin-assisted folding simulations were perforneediio examples: 56 residue
B1 domain of protein G and for 46 residue B domain of protef. Ahe first is an al-
pha/beta protein and the second a helical protein. Thegeipsoperhaps are not typi-
cal chaperonin substrates, but this seems to be irrelevarthé general question about
the molecular implications of the IAM model. On the other tiahese proteins are
paradigms of experimental and theoretical studies of prdtdding mechanisms. Since
their chaperone-free CABS simulations agree very well witberimental facts, we expect
that the observed changes in folding mechanisms within lia@e&ronin are meaningful.
During the simulations we monitored the changes of proteiftigtobule volumes, the
numbers of native contacts, the secondary structure cisrd@d other structural, dynamic
and thermodynamic characteristics. In comparison to tlie ([@haperonin-free) folding
simulations the results of simulations of the chaperosisisted folding of both proteins
could be characterized as follows:
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1. Chaperonin significantly (up to two-times) increasesftegquency of the folding-
unfolding transitions between the near-native structaed the highly denatured
structures.

2. Chaperonin decreases the folding temperature (defindteasmperature at which
the number of native-denatured transitions is the largest)

3. Chaperonin shifts the folding mechanisms from a seqakmntiicleation-and-growth,
towards a more prefabricated, framework type assembly.s Wanifests itself in
weakening of typical nucleation sites and a larger voluméntdrmediates with a
significant, native-like, secondary structure conteng (Sig. 4).

4. Contrary to the original interpretation of the theoratiAM model, the simulations
show that the chaperonin prevents formation of misfoldedamnations, rather than
unfolding the already existing misfolds (see Fig. 4).

While very plausible, the specific predictions emerging friliase simulations await
experimental verification.

Figure 4. lllustration of the misfolding prevention mechamiwithin a chaperonin. Pictures from B1 domain of
protein G folding simulation'$.

5 Insilico Atomic Force Microscopy Experiment

The Atomic Force Microscopy is a powerful method for singl@@cule biophysical exper-
imentations. However, interpretation of the AFM curvesuiegs a model and simulations.
Probably, at present the most popular are simulations withy@e reduced models. As
mentioned before, the Go-type approximation, where ontiv@anteractions are taken
into account, could be non-realistic. Here, we give an exarapin silico AFM simula-

tion for the CABS model, where the force field do not include dhpriori knowledge of

a specific structure. The simulations correspond to isotakconditions, well below un-
folding temperature. The computational experiment isthated in Fig. 5. The molecule
(apo-plastocyanin) is attached at one end to the AFM tabieadrthe opposite end to
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the molecular cantilever. The cantilever moves apart thie taith constant speed and the
force exerted on the spring is measured. The resultingfimee(or force/extension) curve
exhibits characteristic rapid drops of the force upon utifg of particular fragments of
the structure. Usually, the C-terminal hairpin of the pdaganin unfolds as the first, imme-
diately followed by unfolding of the N-terminal hairpin (thoevents are close in time and
sometimes the order of the two events changes). The mostaesis the central foldon (a
six-member beta barrel) that always unfolds as the last.

C-terminal
hairpin

Force

Central
N-terminal foldon

hairpin

T T T T
0 1 2 3 4

Time

Figure 5. In silico AFM experiment with CABS (see the text).

While promising, the CABS assisted interpretation of the ABXperiments requires
a precise scaling between the time of the physical AFM erpemis and the time of the
coarse-grained AFM simulations (which determines a megnirelongation speed in the
simulated experiments). The work along this direction ipriogress.
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We have developed a new extended replica exchange methodiyirgy thermodynamics of
protein folding. Itis based on combination of rejectionefreoves with the traditional exchange
moves and leads to a more efficient sampling relative to the atdmdplica exchange method.
Using all-atom model and explicit solvent for simple trp-cggetein we have shown that our
new hybrid approach increases the number of round trips By. 25

1 Introduction

Computational thermodynamics studies of proteins are gepgnsive due to long equili-
bration times at low temperatures. To speed up computafitreanodynamics quantities
replica-exchange method has been successfully(fsddhe replica exchange is performed
between states with different temperatures allowing t@anh the sampling of low-energy
configurations. However, even for small peptides solvateexplicit solvent one major
problem remains: a huge number of replicas are requiredvierdbe range between the
lowest and largest temperatures. The numbgof round trips between both temperatures
defines a lower bound on the number of independent confignsatampled at the lowest
temperature. As the round trip times increases/ag with the number of replicad/,
the number of independent sampled configurations decraasesdingly. Hence, protein
simulations with explicit water require not only many repk but also long simulation
times in order to obtain sufficient statistics at tempeegwof interest. In our present work
we test a new approach which allows to reduce computatianal by 25% compared to
standard REMD.

2 Methods and Results

In canonical replica exchanfé*two configurations with energiel; and Es, sitting at
temperatured; and7», are exchanged with probabilisgxp(ASAFE). Here, we have
introduced the inverse temperatute= 1/kpT. These exchange moves generate for each
replica a random walk in temperature that allows the reptiescape local minima. Hence,
sampling becomes more efficient than putting all computespurces in a simulation at
the lowest temperatute

In a molecular dynamic simulation, the energy

1
E(z,v) = Epot(z) + Egin(v) with  Egpn(v) = 5 Z mivf Q)

is the sum of the potential enerdy,,;, which depends only on the coordinatesand the
kinetic energyF;, that is solely a function of the velocities Scaling all velocities by a
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factorr changes the kinetic energy by:
Ein(rv) = 12 Egin(v) . 2)

In standard replica exchange molecular dynamics this ig tesecale the velocities after a
successful exchange by a factor

T(1,2) = \/T(2,1)/T(1,2) , (3

that depends on the temperatui@sand 75 of the two replicas that are exchanged. The
rescaling of the velocities leads 9", = vg‘fl), and thereforeA £y, = 0. Hence, the
probability for an exchange is given by

w(l <> 2) = exp(ABAE,). 4)

In Ref. 5,6 we have proposed a different scaling in the camaxicrocanonical replica
exchange simulations. We scale the velocity in a wayft= 0, i.e. all exchange moves
are excepted. Assumin; < E, and scaling parameters andr, given by

- \/Ez,l — Epot(x12) \/Ekm(v(z,n + AE,q
12 = =

E12— Epor(x1,2) Erin(vi,2) ’ ®)
one can exchange the two configurations with probabilitysinee :
Ey(x1,V1) = Epot(X1) + Ekin(v1) = Epot(X2) + 75 Exin(V2) (6)
and
BEa(x2,V2) = Epot(X2) + Erin(v2) = Epot(X1) + 11 Epin(v1) . (7)

The above scaling leads to rejection-free sampling buteaséime time also to a lack
of importance sampling We propose the hybrid method where one exchanges most of the
times replicas according to Eq. 4, re-scaling the velcxititerwards by Eq. 3, but every
50th exchange attempt is done with the rejection-free mtvaisfollow from a velocity
re-scaling according to Eqg. 5.

(a) Standard RE (b) Hybrid
550 T T T T 550

500 — 500

Temperature (K)
g
1
Temperature (K)
F-3
[=}
(=]

1 1
0 20 20 60 30 100 0 20 30 50 30 700
Time (ns) Time (ns)

Figure 1. Walk of a specific replica through temperature ire(ajandard canonical replica exchange molecular
dynamic simulation, and (b) with our new hybrid approach.
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We tested 20-residue trp-cage miniprotein (PDB code 1Ly hdth methods, stan-
dard RE and the hybrid one. The GROMACS program 8uitas employed using the
AMBER94 force-field to model trp-cage protein and the TIP3P water mttel describe
solvent. The unfolded protein was places in a cubic box w@S2water molecules. 40
temperatures we used for REMD are taken from Ref.11. Moreilsition details can be
found in workg:11

Fig. 1 shows typical replica’s trajectories through tenapere space for standard
(Fig. 1a) and hybrid (Fig. 1b) approaches. The number of dduips betweeril; and
T, and back, is greater for hybrid method. Over the 100 ns dmdgicas we observe 79
and 98 round trips for standard and hybrid methods respdgtiVhis suggest that hybrid
approach leads to a more efficient sampling caused by mayednt escaping from local
energy minimas.

The distributions of root-mean-square deviation (RMSDJ) at 280K between sam-
pled configurations and the native state one are presenteig oa. In both cases distribu-
tions look very similar and almost all configurations arehiit2 A to the NMR structure.
Therefore two methods can find folded structure correcttytzance hybrid approach also
leads to correct distribution. This conclusion is also sutgd by Fig. 2b, where the frac-
tion of folded states is displayed for both approaches. Hemnfiguration is defined as
folded if its backbone RMSD to the experimentally deterrdimative structure is within
2.2A. The measured values obtained by hybrid method are censisith the those gotten
by standard replica exchange molecular dynamics.

3 Conclusion

To improve the efficiency of the replicas’s flow through temgtere space additional ve-
locity degrees of freedom might be used in replica exchaimelations by using different
velocity rescaling equations. The new recently introduegelction-free moves combined
with the traditional ones usually utilized in replica exnga molecular dynamiés in-

1
T T T T T T T

0.08~ — Standard -
— Hybrid o.s}

o _ gﬁmffﬁﬁgﬂﬂ

0.6

Probability
o
o
»
T
1
N
z
(=]
»
1
D ]
e —
s =
e
—ro—
e
—
1

woa] @ 4T s HHH

0 1 L 1 1 1 1
0 0.2 0.4 0.6 0.8 300

RMSD (nm)

400
Temperature (K)

Figure 2. (a) Frequency P of configurations with given rooemequare deviation as observed at T= 280 K
in both standard replica-exchange molecular dynamics, acll lying on mixed the standard and proposed
rejection free exchange moves. (b) Fractjonof native-like configurations as function of temperaturesovén

are the values obtained from standard replica-exchangecmatedynamics and such as obtained in the hybrid
method.

93



creases by 2% number of round trips. This method might be especially usefexploring
much more rugged energy landscapes of larger proteins.
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The voltage-dependent anion-selective channel (VDAQn&the major pore for metabolite
exchange through the mitochondrial outer membrane. Its opéa siows a high conductance
and a moderate anion selectivity. It was reported that thecBeity varies upon substitutions
of specific charged residues. In this study the mechanism B%Q selectivity is investigated
on the molecular level using molecular and Brownian dynamicaikitions of thewild-type
and mutant VDAC proteins. The analysis of our trajectoriesaghthat two mutants (K252E
and E158K) feature wild-typelike ionic distribution, whereas the D30K and K61E variant
show altered selectivity. These results agree with theraxatal observations. No long-lived
protein-ion interactions are identified in the trajectsrseiggesting that the selectivity does not
arise from strong ion binding to specific protein residuestdad selectivity modulation seems
to occur through global changes in the electrostatic patiethe pore.

1 Introduction

The voltage-gated anion-selective channel (VDAC), theomapre in the outer mitochon-
drial membrane, is a key regulator of metabolite exchang@d®n mitochondria and cy-
toplasm. In addition to its pore function, VDAC is also thatgp be involved in various
cell processes including apoptosis and calcium homesktathe physiological signifi-
cance of VDAC in the mitochondrial metabolism was reportete strongly correlated to
its voltage-dependence. At voltages above 20 mV and belown2 VDAC proteins are
known to be (partially) closed and impermeable to metaglitn contrast, at low voltages
the pore is fully opened with a high conductance and a moglarsibn selectivity. Experi-
mental measurementand theoretical calculatioA$iave indicated that the protein charge
distribution is the main factor determining the channeestlity. Interestingly, this se-
lectivity was reported to vary in yeast VDAC upon substitag of a few specific charged
residued.

Recently, the structure of human and mouse VDAC (mVDAC1) determined at an
atomic levet’, revealing as-barrel made of 19 antiparallel strands. These atomic struc
tures allow the use of theoretical methods to address tldafurntal principles underlying
the ion translocation and selectivity of the pore at a mdedevel. In the present study,
the effect of mutations on VDAC preference for anions is eixah using molecular (MD)
and Brownian dynamics (BD) simulations of both)d-type(wt) and several mutant pro-
teins.

2 Methods

Molecular Dynamics simulations. A preexisting equilibrated MD system of mVDAC1
embedded in POPE and in the presence of 0.1M3K@is used as a starting point for
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the simulations. After addition of 0.1M KCI and the introdion of point mutations, the
system was equilibrated for 12.5 ns using the following sege: 2.5 ns with all protein
atoms fixed, 2.5 ns with all backbone atoms fixed, and 7.5 nis mgtrestrained atoms.
All simulations were carried out using the NAMD prograas described elsewhéreror
each system a 30 ns trajectory was produced.

Brownian Dynamics simulations.Ten 0.5us BD trajectories of the wt and of four mutant
proteins were produced under equilibrium conditions anthépresence of 0.2 M KClI
using the program gecmcbd and the CHARMM GUI web-basedttfol

3 Results and Discussion

The ion selectivity mechanism was investigated in yeast € site-directed mutagen-
esis replacing individual charged residues with one of {hygosite charge For instance
D30K has been reported to feature an increased reversattigbteompared to the wt
indicating a more marked selectivity whereas K61E mutaotetdl a decreased reversal
potential and a reduced selectivity relative to VDAC wt. &tmutants such as D156K and
R252E exhibited a reversal potential similar to the wt. Biugdation§ performed on the
human structure and Poisson-Nernst-Planck calculdfiaasried out on the mouse struc-
ture also found that D30K in BD simulations and K61E in botidgts alter the channel
selectivity.

We generated 30 ns MD and 10xm8 BD trajectories of the mouse wt protein and
D30K, K61E, E158K, and K252E mutants (equivalent to the D3RR1E, D156K, and
R252E variants in yeast) to get insight into the moleculdehinants of VDAC selec-
tivity. The time-averaged number of Cland K" ions (NV-;- and Nx+) located inside
the pore was computed using the MD and BD trajectories (sbelja Regardless of the
simulation method, th o ratio is found to be similar in the wt and the K252E mutant.
For the E158K mutant this ratio computed using either the NEhe BD trajectory dif-
fers. Noticeably the K158 side chain features a high fleitybih the MD trajectory. The
lack of protein fluctuations in the BD approach may thus arpiais difference and also
the disagreement with the experimental observation. %ﬁe ratio (see Tab. 1) increases
for the D30K and decreases for the K61E mutant. The | ratmseban the number of total

equilibrium MD simulation equilibrium BD simulation
subsitution  N;- N+ JZVV%; Norw  Ngs ]]VV% f,%
wt 3.71 1.12 3.33 2.24 0.46 4.88 3.40
D30K 5.01 0.97 5.16 3.73 0.35 10.53 8.23
K61E 3.10 2.55 1.22 1.37 1.15 1.19 0.94
E158K 4.12 1.00 4.12 3.01 0.34 8.86 6.83
K252E 3.69 0.87 4.26 2.00 0.48 4.20 3.22

Table 1. The ratio between the time-averaged number of &id K+ (]]\\’,C—l;) inside the pore and the ratio
K

. P . .
between the number of total crossing even‘gg—g) were extracted from the MD and/or the BD trajectories.
K

96



average K atoms inside the pore
average Cl atoms inside the pore

Figure 1. The time-averaged number of Kleft) and CI- (right) ions inside the D30K (green) and K61E (red)
mutants differs from the other mutants E158K (blue) and K252&ido) and thewild-type(black).

crossing events for Cland K+ show the same trends. In the D30K and the K61E mutant
MD trajectories an altered ion distribution inside the pisrebserved compared to the wt
and other mutants (see Fig. 1). In the D30K mutant the tinezesged number of Clions
located inside the pore shows an increased population infaviiéle zone centered on the
middle of the pore. In the K61E mutant, theKlistribution rises in a region located be-
tween the entrance and the middle of the pore. These regiersidentified to correspond
to an energy barrier for the passage of @hd K~ in the wf. Local increase of )N+ and
Nc(~ should thus lead to a decrease in the barriers comparedde thahe wt. No long-
lived specific interactions between the ions and proteiidues could be identified in the
MD simulations. We however observe a change in the eleatiosteld arising from the
distribution of fixed charges inside the pore (see Fig. 2héwit anions are attracted from
both sides and cations are repelled. This effect is ampiifitkde D30K mutant whereas it
is leveled off in the K61E mutant, in which cations are everaated on one side.

Figure 2. The electrostatic field is altered in the D30K and Kénutants compared to tiéld-type

4 Conclusions

The experimentally observed change in selectivity doeseein to arise from an alteration
of specific interactions between the ions and the protesteld, our molecular and Brow-
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nian dynamics simulations point to the role of the electiispattern of the pore as being
the main determinant of the moderate anion selectivity oAZDWe indeed showed that
mutation of specific protein charged residues alters tlgstedstatic imprint of the pore

and thus the protein selectivity. Furthermore the good titagive agreement between our
MD and BD data, except for E158K, suggests that the changeléctsvity are not caused

by protein fluctuations.
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The theory othemical organisatiorisis employed as a novel method to analyse and understand
biological network models. The method allows to decompose mitfa reaction network into
sub-networks that are closed and self-maintaining. Althoaigly stoichiometry is considered

to compute organisations, the analysis allows to narrow dbempotential dynamic behaviour

of the network: organisations represent potential stetaty sompositions of the system. We
review the application to a model of sugar metabolisnEircol? and to an HIV dynamics
modef as well as a theoretical result on fragments of rule based rgfodel

1 Introduction — Reaction Networks and Chemical Organisatons

By a reaction networkwe mean a pai{M, R) where M is a set andR is a subset of
Pt (M) X Pz (M). Here Pp,.i: (M) is the set of multisets ovel/. We call the

elements of\/ molecular specieand the elements df reactionsresembling the notions
of chemistry. Byapplyinga reaction(l,r) € R to a multiset ovetl we mean replacing
the subset by the subset.

A beingclosedmeans that by applying reactions possible to multisets dwge do not
get molecules outsidd. A beingself-maintainingmeans that applying reactions possible
at certain rates to a multiset ovief does not reduce the number of molecules of any species
of A. A subset ofM is achemical organisatichif it is closed and self-maintaining. An
example for the introduced concepts can be found in Fig. 1.

The computation of the chemical organisations can be doing osly stoichiometric
information. The rate constants and the kinetic law areewgt. But still there is a
connection to théong term behaviouof the system in the sense that the set of molecules
occurring at fixpointy, periodic attractors and other limit sef®rm organisations. This
particular property of the chemical organisations is tlesoa why they can be helpful for
structuring bio-chemical reaction networks andiftentifying modules
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Figure 1. Inthe upper left corner the netw@ii/, R) with M = {a, b, c¢,d} andR = {a+b — a+2b,a+d —
a+2d,b+c—2c,c—bb+d—c,b—0,c— 0,d— 0} is shown. In theHasse diagranon the bottom
several other properties of the subsets are marked. In thimge we also see that the organisations form a
lattice.

2 Analysis of an HIV Dynamics Model

We apply chemical organisation theory to a md#éscribing the interaction of the HI
virus with immune system ceflsIt was developed to explain the efficacy of various drug
treatment strategies. Especially it shows, why a drugrreat strategy does not try to
remove the virus, but aims at stimulating the immune defegwgeh that the immune system
controls the virus at low but positive quantities. Chemimajanisation theory can reveal,
even in such relatively small models, a structure (lattiterganisations), which can be
used to describe the dynamics of the model and to explairtthiegy of a drug treatment
from a different perspective.

After the transformation of the ODE model into a reactionnwek, we can calculate
the chemical organisations of the system, see Fig. 2. It shbat the three organisations
{z}, {z,y} and{x,y,w, z} correspond to “no virus”, “immune system destruction” and
“virus under control”, respectively. It has been obsenyed although the virus load can be
decreased below detection limit, tkieus cannot be fully removedrherefore, the actual
strategy of a drug therapy is toove the system into the highest organisatather than the
lowest, since then the chance is high to move to the middlanisgtion which represents
a destroyed immune system.
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Figure 2. The hierarchy of organisations is shown as a Hdisggam (bottom right). Dynamic simulations
leading to attractors corresponding to the two upper osgdioins are shown on the left.

3 Organisations in the Sugar Metabolism ofE. coli

When looking at organisations of a model of sugar metabolisi. icoli including gene
expression, signal transduction and enzymatic activiieme are found to coincide with
inducible biochemical pathways. This shows that by empigythe theory of chemical
organisations to intracellular networks it is possiblederitify functional units in the net-
work and hence analyse and understand biological netwoidkelno The organisations
are analysed for several scenarios representing badesiath on different sugar sources
modelled as different inflows, see Fig. 3. The uncovered nesdn €) correspond to the
inducible uptake systenfier lactose and glycerol. Therefore the result confirms fhat
cosecan beunconditionally utilisedwhile lactose and glycerol can only be utilised after
their respective uptake systems have been induced.

4 Fragments and Chemical Organisations

Often the reaction® of a reaction network)M, R) are not explicitly given, but implicitly
asrules meaning that similar reactions are grouped together. Fenih write (M, R)
and refer to it asule-basedmodel. A long term goal is to expand the theory of chemical
organisations to this case. The result reviewed here istafep in this direction.
Fragments form a newcoarse-grainednodel out of the rule-based modgl/, R),
which is smaller but carries a lot of information about thégimal set of ODEs. The
distinctive feature of fragments is theioundnessi.e. assuming mass action kinetics for
(M, R) the concentration of a fragment is given as a linear comionaif concentra-
tions of molecular species. Therefore fragments help gppith the combinatorial explo-
sion. Since fragments and chemical organisations tackieliffierent problems concerning
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Figure 3. Organisations consist of the species sets cautairtheir lower organisation(s) plus the species set(s)
denoted in their label. a starvation, no inflow; If) growth on glucose only;cj growth on lactose only;d)
growth on glycerol only;€) growth on glucose, lactose, and glycerol.

complexity of reaction networks, it should beneficial to combinthem. We showed that
in many cases the fragments found in an organisation fornrganisation of fragments

see Fig. 4. We are planning to deduce some more structucethiation via this theoretic
link, like assertions on quality of coarse graining and @asomputation of organisations.

org

org

(M,R) o

Figure 4. The rule-based\/, R) and explicit(M, R) reaction network with the set of organisatiafisas well
as the fragment reaction network and their set of organiss€br.
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Protein-protein complexes play key roles in many cellulacpsses. Therefore, knowledge of
the 3D structure of protein-complexes is of fundamental ingrare. A key goal in protein-
protein docking is to identify near-native protein-complgtxuctures using an appropriate
scoring function. In this work, we tested our recently depeld knowledge-based approach
DrugScor€P! (1) for identifying hotspots in protein-protein interfaxgll) as a scoring function
for rescoring a large dataset of pre-generated proteitejordocking decoys, and (lll) as an ob-
jective function in combination with a fast spherical harnosAbased protein-protein docking
tool for predicting 3D structures of protein-protein conxas.

1 Introduction

Protein-protein interactions have important implicatidn most cellular signaling pro-
cesses. Therefore, protein interfaces become more andimpegtant as drug targéts
Several studies were published addressing the propeftigimaing sites in protein sur-
face areas and small molecule inhibitors targeting thestejor interaction sites®. From
these, it is known that protein-protein complex formaticegiiently relies on a few inter-
face residues (hotspots) that account for most of the binfiltee energy. Various protein-
protein docking algorithms have been developed duringdkeylears that allow predict-
ing the binding mode of two protein complex partrfets There are two main aspects in
protein-protein docking: (I) Searching for possible dockconfigurations and (ll) assess-
ing each predicted configuration with a scoring functiorr. the latter, a fast and accurate
scoring function is required that identifies a (the) posé ¢tbanes close (the closest) to the
native structure on the first (on one of the first) scoring (ankDespite many advances
in the field of protein-protein docking in the past years, thsults are still not satisfy-
ing: Whereas the generation of several thousands of dockingens is just a question of
computational resources available, the identificationezfrmative complex structures by
a scoring function is still challenging.

In this work, we present a fast and accurate computatiormbagh to predict protein-
protein interactions. The approach is based on Drug&@paeknowledge-based scoring
function for which pair potentials were derived from 851 gex structures and adapted
against 309 experimental alanine scanning results. In andsy the DrugScore approach
has been proven successful already for scoring and pregliptotein-ligand and protein-
RNA complexe%’. In part, this has been attributed to the implicit, welldrated con-
sideration of several different types of interactions. &Mihg such a delicate balance is
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also considered crucial for successfully predicting grepgrotein complexes To the best
of our knowledge, an aspect that has never been addresséetisarthese scoring func-
tions are able to predict the change in binding free energyngingle alanine mutations
(alanine scanning). Currently, there are only a few contparial approaches that address
the prediction of hotspots in protein interfaces. Threel-kebwn approaches, Fold®X
MM/PBSAL° and the recently published CC/PB8Anethod, were used for comparison
to our QSAR-adapted scoring function DrugS¢éte?

2 Results and Discussion

2.1 Insilico Alanine-scanning

DrugScor&P' was used for computational alanine-scanning on a datases @irotein-
protein complexes with a total of 309 mutations to predicraes in the binding free
energy upon mutations in the interfd&e Computed and experimental values showed a
correlation ofr? = 0.58. To improve the predictive power, a QSAR-model wal based
on 24 residue-specific atom types. This improves the cdivel#o 2 = 0.73, with a root
mean square deviation of 1.23 kcal/mol. A Leave-One-Oulyaisyields a correlation
coefficient of¢? = 0.64. For further validation, alanine-scanning with DsogrePPI was
performed on two pharmaceutically important systems, RasRaps, which signal to a
number of distinct pathways by interacting with diverse dstkeam effectors. We note
that these two systems were not included in the QSAR trais@ig The results (Tab. 1)
demonstrate that DrugscorePPI outperforms other statieeedirt methods not only with
respect to predictive power but also in terms of computatidgimes of 3 seconds per
residue on a standard CFU

Method Ras/RalGDS| Raps/Raf
DrugScor&F 0.62 0.45
MM-PBSA 0.46 n.a.
FoldX 0.52 0.07
CC/PBSA 0.23 0.22

Table 1. Correlation coefficients of predicted vs. experitalerelative binding free energies for the two external
test datasets.

Based on these findings, we developed the Drug$Bbmsebservel?, accessi-
ble athttp://cpclab.uni-duesseldorf.de/dsppi , which allows identifying
hotspot residues in protein-protein interfaces and perifoy computational alanine scan-
ning of a protein-protein interface within a few minutes.

2.2 Rescoring of Protein-protein Docking Decoys

When used as a scoring function to evaluate decoys of a nemdedt dataset of 54
protein-protein complexes for which "unbound perturbatisolutions have been gener-
ated®, funnel-shaped DrugScdi@ score vs. rmsd curves were obtained for the majority
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Figure 1. (A) Energy funnel for rescoring docking decoysegated for protein-protein complexes of porcine
kallikrein A / bovine pancreatic trypsin inhibitor. (B) Coragson of decoy quality from docking a ribonuclease
inhibitor to ribonuclease A. The RMSD is given with respercttte native structure (blue).

of cases (Fig. 1). Accordingly, DrugScéFféwas able to rank a near-native solution, i.e.
rmsd< 10A, in the top ten (five) in 94.1% (64.8%) of the cases. When apdb a dataset
of "unbound docking” solutions, DrugScé¥é was able to rank a near-native solution in
the top ten (five) in 100% (73.3%) of the cases. These resuitpare favorably with those
obtained by Baker et &l.

2.3 Protein-protein Docking

Finally, DrugScorB”' was applied as an objective function in FRODOQK order to pre-
dict 3D structures of protein-protein complexes. For thigcalculated knowledge-based
potential grids by DrugScof&' were used to sample protein-protein configurations and
to identify near-native complex configurations (Fig. 1). Wapplied to a subset of 97
bound-bound test cases of the ZDOCK benchmark 3, convingsglts were obtained
(docking success rate for complexes in the top ten with rendd A: 69.1%). When com-
paring the docking results obtained for 76 cases of the ZD®ekchmark 2 to ZDOCK
version 2.3, version 3.0, and the original FRODOCK dockiragpduré® 4 our approach
outperforms the other methods (Tab. 2).

IRMSD <=10.0A | <=25A | <=25A | <4A
Top10 Top20 Topl00 | Topl00
DrugScor&F' 2 69.1 65.6 76.0 80.2
DrugScor&FTP 61.8 61.8 69.7 72.4
ZDOCK2.3 - 18.4 31.6 -
ZDOCKa3.0 - 25.0 - 50.0
FRODOCK - 17.1 30.3 50.0

Table 2. Protein-protein docking results. Success ratés in
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Survival of the Fattest, the Flattest, or the Fastest?
The Role of Fluctuations in Biological Evolution

Michael Lassig

Institute of Theoretical Physics, University of Colognél@cher Str. 77, 50937 &n, Germany
E-mail: lassig@thp.uni-koeln.de

Natural selection is an important factor in biological ex@n. This is expressed in the
famous Darwinian principle of survival of the fittest. Acdorg to this principle, popu-
lations should evolve towards peaks of a fithess landscapeieter, selection competes
with stochastic evolutionary forces, which include mutas and reproductive fluctuations
(genetic drift). Moreover, selection itself is often tirdependent and sometimes stochas-
tic: fitness becomes a dynamic seascape rather than a atadischpe. Stochastic forces
drive populations away from fitness peaks - but where do thelyup? In this talk, | dis-
cuss fluctuation principles of molecular evolution, whidhablish links to the statistical
physics of entropy and entropy productioh These principles are applied to the evolution
of gene regulatioh®, of RNA structures, and of the influenza virus.

These applications illustrate the diverse sources anadgicdl consequences of fluctua-
tions in molecular evolution:

Survival of the fattestSmall genomic units are mostly monomorphic, that is, a patjr
can be represented by a point moving in a fitness landscapgjuliibrium, the distribution
of population states is shaped by the height and by the fafditness peaks, that is, the
number of sequence states with near-optimal fitness. Swilibeiz reflect the interplay of
selection and genetic drift. An example is the equilibriuistribution of binding energies
for regulatory binding sites*.

Survival of the flattestQuantitative traits depending on a larger number of gendaaic
are generically polymorphic, that is, trait and fitness galdiffer between individuals in
a population. Such traits often evolve under significantatiobal load. The resulting
equilibrium distributions are governed by the height andhmy flatness of fithess peaks,
that is, the susceptibility of the system to deleteriousatioihs. An example is micro-RNA
processing in plants, a complex function that depends aicpkar structural elements of
the pre-miRNA fold. In this system, the interplay of selentiand mutations is shown
togenerate genomic modularity, that is, a mechanism fapeddent evolution of different
functions.

Survival of the fastestSystems under strong adaptive pressure are genericallyam-a
equilibrium state, and their evolution is shaped by berafas well as deleterious muta-
tionst-2. In the evolution of the human influenza virus, for examgie, \tiral proteins must
adapt to changing host immune challenge. This dynamicsteyméed by the fastest
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strains, which produce beneficial mutations away from hastunity. We show that adap-
tation leads to interference with protein stability andesthiral functions. Adaptation and
conservation, i.e., beneficial and deleterious mutatiarestightly coupled in this system,
which affects the predictability of influenza evolution.

References

1. V. Mustonen and M. &ssig. From fitness landscapes to seascapes: non-equilibri
dynamics of selection and adaptation. Trends Genet 2591(2009).

2. V. Mustonen and M. &ssig. Fitness flux and ubiquity of adaptive evolution. Proc
Natl. Acad. Sci. 107, 4248-53, (2010).

3. V. Mustonen, J. Kinney, CG. Callan Jr, and Madsig. Energy-dependent fitness: a
guantitative model for the evolution of yeast transcriptfactor binding sites. Proc.
Natl. Acad. Sci. 105, 12376-81, (2008).

4. M. Lassig. From biophysics to evolutionary genetics: statstispects of gene regu-
lation. BMC Bioinformatics 8 Suppl 6, S7, (2007).

110



Automatic Template-based Model Generation of
G-protein Coupled Receptors

Dorota Latek! and Slawomir Filipek?

1 International Institute of Molecular and Cell Biology
4 Ks. Trojdena Street, 02-109 Warsaw, Poland
E-mail: dlatek@iimcb.gov.pl

2 The Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-08&8W, Poland
E-mail: sfilipek@chem.uw.edu.pl

G-protein coupled receptors are one of the main targets iplihemaceutical industry. How-
ever, only few structures are solved to date and this factdrgithe drug discovery process. In
contrast to time-consuming experimental methods of structeterehination, homology mod-
eling could be used successfully in many cases, as it was sindve last GPCR-Dock compe-
tition. GPCRs have low degree of sequence similarity, howthey share the same sequence
motifs and, most importantly, the same seven-helices bundievibich makes comparative
modeling feasible. Here, we present a simple python tool foraatic generation of the align-
ment and the final model of a receptor. The method is based oneppuoéifile comparison and
well-known tools for template-based modeling such as MUSCOhdEModeller.

1 Introduction

G-protein coupled receptors form the largest family of meanb receptors divided into
five main sub-families: Glutamate, Rhodopsin, Adhesionzzted/Taste2 and Secretin
(the GRAFS classification systeln)Among these sub-families, only few Rhodopsin-like
receptors have 3D structure solved to date, mostly in thegamist-bound, inactive state.
Structural biology of GPCR confirmed a seven-helices bufuiite shared by all receptors.
Nevertheless, while looking into a more detailed, atomisitture of GPCR structures, sig-
nificant differences in side-chain rotameric states of anaicids and slight changes in the
backbone of TM helices combined with high structural diitgrsf extra and intra-cellular
loops make homology modeling quite challenging. The tylpgproach to the structure
modeling of GPCRs involves target-template alignmentgmasg proper assignment of
conserved residues and motifs, followed by model building the last but not the least
step of molecular dynamics refinement, most preferablyliatalm lipids and water envi-
ronment. In this work we focused on the first step, namely gggience alignment and the
model building.

Rhodopsin-like and other families of GPCR were carefullarained by different
methods of sequence comparison: traditional phylogoretidysis, HMMs-based com-
parisort, multidimensional scaling (MD$)and quite recently also a combined, HHsearch,
Needleman-Wunsch-based and motif anal§is€hese approaches, were, however, mostly
used for the classification of GPCRs and not for homology riegleFor the latter task, a
multiple sequence alignment approach combined with hyybpcity and TM region pre-
diction and manual adjustment is more frequently ésétere, we decided to use a well
known approach to the target-template alignment which isoéile-profile comparisoh
The idea of profiles was originally developed by Gribskand followed by a number of
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Figure 1. Scheme of the modeling procedure. The crucial stéeisarget-template profile-profile alignment
performed by MUSCLE.

different applications®°. Some of the applications use Modelftto reconstruct protein
models from the alignmerftbecause of its simplicity and high performance. Recently, a
new concept was added to the Modeller package - a DOPE sdarietion'?, which is a
model scoring function based on knowledge-based, statigiotentials.

2 Materials and Methods

The method (see Fig. 1) among several new scripts and predi@nprocessing the se-
quence alignment utilizes the Biopython libraffesa useful, open-source package for bi-
ological computations. In the first step of the pipeline tHeABT search is performed
for the target and template sequences separately on theedandant sequence database.
The extracted sequences are aligned by MUSEIt& construct two multiple sequence
alignments (MSAs). The MUSCLE program which is used heregnis of the fastest
tools for sequence comparison. It utilities fast distarst@meation using k-mer counting
and progressive alignment followed by refinement using-tiegendent restricted parti-
tioning. Target and template MSAs obtained from the MUSClréggpam are merged in
profile-profile comparison again by MUSCLE and finally twogaked sequences of the
target and the template are extracted. The resulting abgihns automatically checked
if all the motifs, conserved residues and the most conseti®dphide bridge between
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Figure 2. Alignment accuracy vs. target-template sequemnciéasity. The sequence similarity, shown in x-axis,
was computed using Clustalw?2 for each pair of the target amglegte. The alignment accuracy was computed
as the ratio of correctly aligned residues divided by thgterf the target sequence.

the second extracellular loop (EC2) and TMH3 are propeiiyneld. Additionally, gaps

in the alignment of TM helices which are longer than 1 residteeremoved. The align-
ment is transformed to the PIR format and the DOPE model imgjlbith subsequent slow
MD-refinement of loops is performed by Modeller. The top 10B¥3scored models are
selected for comparison with PDB GPCR structures.

3 Results and Discussion

We tested our procedure on all 7 Rhodopsin-like receptorishmvere solved to date,
namely: bovine rhodopsin, beta-1 and beta-2 adrenergidd A@enosine, CXCR4
chemokine, dopamine D3 and histamine H1 receptors (PDBf&B, 2vt4, 2rhl, 3eml,
30e6, 3pbl, 3rze). Since our aim was not to capture the straladifference between the
active and inactive state of the receptor we chose only th&ganist-bound structures.
At first we computed the alignment accuracy taking the vimidegated STAMP structural
alignment* as a reference. In Fig. 2 we compare the accuracy of thramadigts: a simple
pairwise alignment (PSA) extracted from a single MSA of alElPCRs from PDB with
a target sequence, an alignment extracted from two mergefishéEthe target and the
template and an adjusted alignment from merged MSAs witmalifs and disulphides
properly aligned. A significant improvement of MSAs-invet approach over PSAs is
observed in nearly all cases.

From adjusted, MSAs-based alignments with adjustmentsfotain the proper align-
ment of important functional motifs and disulphide bridges built 50 protein models by
Modeller. The C-alpha RMSD of TM region excluding EC and I8ti@-cellular) loops
of the top 10 DOPE-scored models for each target-templateigppresented in Fig. 3.
To compare our results with a simple PSAs-based approaclenergted 50 models from
each target-template PSA and depicted C-alpha RMSD witlertso the native in Fig. 3.
Again, a significant improvement of the model quality is alved when using MSAs-based
alignments.

Additionally to the above tests, we used our approach in tRERBDock2010 compe-
tition in combination with the Glide docking softwafe Our model of a small molecule
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obtained from each target-template PSA.

eticlopride in a complex with the D3 dopamine receptor wasest as eighth among alll
sent modefs

4 Concluding Remarks

The presented method is a first step in GPCRs model buildihgs Stage should be nec-
essarily followed by a MD all-atom refinement, preferablythie explicit membrane en-
vironment. The length of loops which can be modeled with tlethod is limited by the
Modeller performance. Since Modeller uses fragment-baggdoach to loop modeling
the loop length should not exceed ca. 10 residues to maiapgropriate performance of
the method. The method is freely available for academic gaep and could be down-
loaded from:http://www.chem.uw.edu.pl/people/SFilipek/
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Since the advent of high-speed computers, simulations ha@ri®an important part of every
branch of science and technology, including the biologszaénces. The level and extent of
detail of simulations depends on the size- and time-scaleso$ybtem under study. Individual
biomacromolecules and their complexes can be simulated atah@sdic level at compara-
tively short time scales. Longer time- and size-scales requmarse-grained description in
which groups of atoms are merged or, at extreme, a macromolednéaied as a continuous
object. Finally, network description in terms of the influeraf the components on each other
is used for entire cellular systems. The paper gives an awrof the foundations and appli-
cations of these approaches in the context of Harold Schisragntribution to the research of
biomolecular systems.

1 Introduction

Understanding the functioning of living cells is one of tlreatest challenges of contem-
porary molecular and system bioldgyThe cellular machinery consists of information
storage (nucleus or nucleoid), power centers, motorssdérgtion centers, etc., as well as
the building stuff (cytoskeleton), and cell membrane/e&lll. Most of the constituents are

composed of biopolymers: nucleic acids, proteins, sugaassemblies (lipids). The com-

ponents are related to each other by a network of intermtaiemteractions and chemical

reactions that give rise to the phenomenon of life.

Even though the elementary interactions belong to the ldywhysics, the complexity
of a system enables us to use the microscopic approach, yamécular quantum me-
chanics, only for very tiny parts of a system. This approaateicessary when studying el-
ementary chemical reactions that are at the root of celpriacesses (such as, e.g., protein
hydrolysis or reduction of molecular oxygen in the cytoecheosystem) (Fig. 1). If whole
proteins, nucleic acids, enzymes or receptors includiegstirrounding lipid membranes
come into play, it is necessary to resort to empirical fore&l&, in which a molecule is
considered at a classical level, and a possibility of a melfi@nge of electronic state is
ignored. Therefore, the electrons are no longer treatendasgdual objects and their coor-
dinates are averaged over. On the border line is the QM/MMas¢Rarrinello approach
in which a (larger) part of the system is treated at a clakkival and a (smaller) essential
part in which chemical reactions take place at the QM level.

The atomistic level is still too complex to run large timedasize-scale simulations in
real time and to extract important trends from such simoifeti Here comes the coarse-
graining, a variety of approaches in which a number of atoresngerged into a single
interacting site5. Coarse-graining can affect just groups of atoms that formtaviously
rigid object (such as, e.g., a phenyl group), more flexibleas (e.g., a lysine side chain)
or, at the extreme, whole molecules/domains are treatethgke snteracting sites or a
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nucleic acid molecule is treated as an elastic rod (Fig. Xplitly or implicitly, coarse
graining means averaging out non-essential degrees afdnee

All methodologies summarized above belong to componesédapproach, in which
individual atoms, groups of atoms or molecules are consitieA different view point is
offered by a system or network-based approach, in which tha@levpopulation of, e.g.,
a given kind of enzyme is an object and the system is deschibms of “bulk” inter-
actions and dependencies between such collective objEits 1). The relations can be
considered at a detailed chemical level as, e.g., reactitenconstants, or approximated
by simple Boolean relations. This view can be compared tbaha general manager of
a factory who considers each of its divisions in terms of ggstoduce output, efficiency,
dependence on each other, rather than taking care of edetdirad workplace at all times.

In this paper, an outline of the derivation of the above-ro#etd approaches to the
descriptions of biological systems in terms of averagingrakie less important degrees of
freedom is presented, and applications of each resolwial are discussed.

2 Atomistically-detailed Approaches

The potential energy surface (PES) of any molecular systambe constructed based on
molecular quantum mechanics, according to which the eris@yaverage of the Hamilto-
nian operator over system’s wavefunction. Within the Bopenheimer approximation,
the effective potential energy of a molecular system carxpeessed by Eq. 1.
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whereH,, is the electronic part of the Hamiltonian operator (Eq. 4) @n; is the elec-
tronic wavefunction that depends on the coordinates of thmia nucleiR;,Rs, ... RN

and electronsry,ro,...1r, present in the system and on the spins of the electrons,
s1,82,...,8n. If only electronic stationary states are consider®g, is a solution of the
timeless Sctirdinger equation (3) with the electronic Hamiltonian (Ej}. 4

I’_\Iel\IJel = Eel\I}el (3)

. ZA

i, DD IEAEDY Z )
where/\; denotes the Laplacian in the coordinategthfelectron andn. electron mass,
h = h/2m, h being the Planck constant.

Eqg. 1 provides justification of expressing the PES of a mdée@ystem as a function
of nuclear coordinates, which are the essential degreeeefiém here. The electron
degrees of freedom are averaged out. Empirical force fie&lslatained by approximating
Eg. 1 by a neo-classical expression (Ecf: 5)

n)

(
U= Z %kzd (di —df)* + Z —ke (6 — 67)° Z Z [1 + cos (nw;)]

bonds bond dihedral

angles angles

+3 Sl (Tff ) — (rfjﬂ ©)

i j<i Tij rij

where the first two terms account for bond and bond-angleraefion from their un-
strained valued® and§°, respectivelyk?, andk? being the force constants, and the third
term accounts for torsional interactions, witllenoting a dihedral angle afd™ the bar-
rier of the n-fold term. The first term in the double sum expessCoulombic interactions
between the effective charges localized on atoms sepavgtadlistance of in a medium
of relative dielectric constan®, the factor of 332 converting the energy to kcal/mol pro-
vided that distances are expressed in afbgsrand charges in electron-charge unit, the
second term in the double sum expresses non-bonded rapualsib dispersion interac-
tions, usually approximated by the Lennard-Jones (12-@ntial, withe andr° denoting
the well depth and van der Waals distance, respectively. bidlotled (electrostatic and
Lennard-Jones) interactions are calculated only betweensthat are not bonded or 1,3-
nonbonded.
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Eq. 5 is approximate, because all terms in it, except thetshoge bond-angle and
torsional terms are pairwise, while the parent PES given dpy Ecannot be reduced to
pairwise terms, even though the potential-energy opesatothe electronic Hamiltonian
contains pairwise terms exclusively, because of averagugy the degrees of freedom
of the electrons. More sophisticated local multibody efdsuch as anharmonicity of the
bond-stretching potentials, the stretch-bend terms do¢inel-torsional terms) are included
in class Il force field§ while long-range “through-space” multibody effects arelided
in polarizable force fieldswhich are, however, more expensive to use and more diffigult t
parameterize. Probably the very first force field practycatiplemented in biomolecular
calculations was the Empirical Conformational Energy Paagfor Peptides and Proteins
(ECEPP) developed in Harold Scheraga’s labor&tory

3 Coarse Graining

The transition from atomistically-detailed to coarsehged force fields implies averaging
out the less important atomic degrees of freedom. A physas®ed choice of averaging
is the computation of the potential of mean force (PMF) otrieted free energy (RFE)
function of the system, as given by Eq: %°

E(X,Y)

F(X;T)=U(X;T)=—RTIn {/ exp [_T] dVy +C(T)  (6)

whereX andY denote the primary (coarse-grained) and secondary (aa@i@ag) degrees

of freedom, respectively; the two types of the degrees adoen must be orthogonal to
each otheryY L X, T is the absolute temperature, aRds the universal gas constafity

is the space spanned by secondary variablesddgds the volume element. The additive
constanC(T") depends on the reference state selected to compute the. PMF

The effective energy function defined by Eq. 6 is directlatedl to the probability of a
coarse-grained configuration of a system. Ensemble aveadeulated by using the PMF
correspond to those calculated based on the all-atom agpPpavhile the expressions for
internal energy and heat capacity must contain the first sirdind second derivatives of
the PMF in temperature to be equivalent to those calculaited the original PES.

Eqg. 6 can serve a prototype for the derivation of an effeaivergy function; however,
it must be approximated because calculating a multi-dino@as integral over the whole
configurational space would cost much more than than atmalistdetailed calculations.
This equation is directly implemented in the factor-expamsnethod, which was used to
derive the UNRES coarse-grained force field for protein &thons developed in Harold
Scheraga’s laboratory and in my laborafoty 3 and in the force-matching method de-
veloped in Gregory Voth's laboratoiy/'4 Other physics-based approaches, such as the
MARTINI force field recently developed by Marrink and cowerk™® or the very first
coarse-grained force field developed for protein simutetioy Levitt® assume that the ef-
fective energy function is a sum of neo-classical terms efftim largely borrowed from
Eq. 5; however, such a treatment ignores the multibody terish are essential when the
secondary degrees of freedom are strongly coupled, ascproteind. Consequently,
multibody terms are very important to reproduce regulaosdary structure of proteifis
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In the factor-expansion approach, Eq. 6 is expanded intoneo$dactors of increasing
order (Eq. 7). The factors of order ¥¢)) comprise the interactions within single sites
or between two coarse-grained sites; the latter can beifidehtvith the long-range neo-
classical terms, the factors of order 2 contain pairs ofraaons such as, e.g., the local
interactions within the adjacent amino-acid residuesctvigive rise to the torsional terms
in UNRES. Higher-order terms correspond to more complex correiatsuch as, e.g., the
correlations between backbone-local and backbone-etatic interactions in UNRES

FX) =Y X+ 2+ Y O Y X
i i<j i<j<k i1<2...<in

Analytical expressions for the first-order factors can berdwed from Eqg. 5 while
those for higher-order terms can be derived by expandingtarfinto a series of Kubo’s
generalized cumulants, as in UNRES, to obtain approximaagytical expressioris Each
of the factors corresponds only to the sites that are coedldimit, out of the context of the
whole system. Therefore, the analytical expression canabanpeterized by using even
high-level quantum mechanicab initio calculation$?. The factor expansion can also be
related to statistical potentials derived from structwtalabase such as, e.g., the CABS
force field developed in Andrzej Kdiski's laboratory’ except that it is not possible to
separate a given interaction from the context of the entitetire.

The force-matching method, also referred to as the mulésazarse-graining (MSCG)
method® 4 assumes decomposition of the PMF of Eq. 6 into radial largze pairwise
terms and neo-classical short-range terms. Centers ohtamction sites are located in
their centers of masses. The long-range terms are exprassgpline functions in the
distance and the force field is parameterized by miniminaticthe sum of the squares of
the differences between the average forces calculateddtibatom MD simulations of a
given system and those calculated from the CG model.

Other types of coarse-grained potentials, which are nactyr referenced to Eg.
6, comprise arbitrary potentials aimed at studying genfe@iures of biopolymers only,
structure-based potentials (e.g., the-like potentials), and elastic-network potentials. The
reader is referred to recent reviews for defails

4 Application of All-atom and Coarse-grained Force Fields

The earliest applications of empirical force fields coneérlocal energy minimization and
normal-mode analysis. Search for the most stable structuas initially identified with
global minima of the potential energy functidnA variety of global-optimization methods
has been developed not only for biomacromolecules but atstdsters and crystals, a big
part of them in Harold Scheraga’s laboratbl. With the all-atom ECEPP/3 force field
and electrostatically-driven Monte Carlo method, theveasitructure of the 46-residue N-
terminal domain of staphylococcal protein A was locatechaddwest-energy structue
With the coarse-grained UNRES potential and the confoonatispace annealing (CSA)
method, the structure of phosphate transport system teg&#boU fromT. maritima(PDB
code: 1SUM; 237 residue8)was successfully predicted in 6th Community Wide Exper-
iment on the Critical Assessment of Techniques experiméAiSP6). However, recent
findings:12-21 demonstrated that conformational entropy is a key playetet@ermining
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Figure 2. (a) Global Distance Test (GDT) plot of our models ABP9 target T0578 compared with other groups
targets. The rightmost line corresponds to UNRES model 4. pefosition of our model 4 of T0578 (blue) on
its experimental structure (red, yellow, and gray). The 8458 fragment (ribbon) matches the experimental
structure within 53 C® RMSD.

the stability of a structure and the free energy of the eltrgn and not the lowest-energy
conformation in a basin should be considered. This prieciphs implemented with the
UNRES force field and some success has been achieved in CAGRQ 2).

The most important application of the force fields is studyimotein folding. Here
molecular dynamics and its extensions are mainly tsathough appropriately designed
Monte Carlo approaches are also appiieéd. Recently®, a dedicated machine ANTON
has been constructed, which enables the researchers yoocdrall-atom folding simu-
lations with explicit solvent of small proteins (villin hdpiece and WW domain) at mil-
lisecond scale. Use of the UNRES321or CABS'":??force field extends the time- and
size-scale to proteins with several hundred residues.|lfig@neralized-ensemble sam-
pling with molecular dynamics or Monte Carlo methods as agirenenables us to study
the thermodynamics and free-energy landscapes of folditighigh confidence'213
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5 Networks

Although the network view might seem to be an entirely défgrphilosophy, compared
to looking at individual components of cellular machineslyeraging provides a bridge
between the two approaches. Here, averaging over ensenfhiledividual components,
which can defined as basins in the potential energy surfaagriied out. The essential
degrees of freedom remaining are changes of concentratiemso chemical reactions
and diffusion. A system is described in terms of a networkniledi the relations between
components, which can be reduced to a gPapinich can be analyzed by using the appa-
ratus of the graph theory. By comparing the graphs corredipgrio different subsystems,
differences and similarities in their functioning can baricf.

6 Conclusions and Outlook

With still increasing computer power, including the ma@snlesigned for molecular sim-
ulationg?, still greater molecular systems are tractable. At preseis possible to find
most stable structures and to simulate the folding of snsal€ral tens of residues) pro-
teins at atomistic-detail leveP®. Coarse-graining enables us to find stable structures and
perform folding simulations of proteins with several husdiresidues and study conforma-
tional changes of even bigger protéeiffst Finally, the network-based approachesable
us to get an overview of functioning of the cellular machindt is probably a question
of time that multiscale approaches will be developed, inclwha cellular or subcellular
system will be treated simultaneously at all levels, frommum-mechanical to network,
more detailed representation being turned on when impoetzants (such as enzymatic
reactions) are expected to occur. The rationale for suchltiscale approach is the aver-
aging The QM/MM approach and simulating protein folding ated coarse-grained and
atomistically-detailed resolutions, which are alreadgilable’, are the first step to such
fully multi-level simulations.
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We present a method for selecting structurally non-redundabsets of the PDB. A suffix
array based structure search method in conjunction with d&&surate alignments produces a
k-nearest neighbor network. Modularity clustering andeotbtommunity detection methods
decompose the network into clusters from which the most destinactures can be selected.
The resulting set of protein structures avoids severaksbirings of sequence based sets which
are in wide use today. Compared to sequence based methodspdue@significantly fewer
and more homogenous clusters.

1 Introduction

Representative lists of proteins are widely used to reduesample bias in the PDB. This
is essential for all statistical approaches to proteincstine analysis and prediction. The
various lists in use today either based on classificatiomsaitin structures which do not
cover the entire Protein Database, or even more commonlyaggeence identity as a filter
criterion. Hobohm et. al. state that representative pdb sets provide maximum coverag
with minimum redundancy. While their selection is based @usace similarity, they sug-
gest that: "If the goal is to have a set of structurally uniguateins, then explicit structural
superposition should be used, rather than sequence aligifméerhe reasons are fairly
obvious: similar sequences imply similar structures, bssichilar sequences do not nec-
essarily imply dissimilar structures. Hence, sequenceddéists always contain proteins
with similar structures. Furthermore, examples like theaPalsus challenge show that
even the first statement doesn’t always hold. Another prolidethe case where the same
protein has been crystallized in different conformatioAthough identical in sequence,
the structures may be distinct enough to include both comdtions in the representative
set. Our method seeks to avoid these problems.

2 Methods

Our method uses an index based structure search nfetiha@termine the most closely
related structures for each protein. Our structure aligrimmethod relies on a classification
of fragments into about 300 classes. Given a fragment (fe@pfrom a protein, one can
calculate the probability of being in each clasBor this work, we have a discretized the
vectors into an alphabet of about 1000 characters. This lioermation, but allows one
to use an enhanced suffix array for very fast lookups. AfterRDB has been indexed,
one can perform lookups in linear time with respect to quength. Thek best hits can
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then be accurately re-aligned using the original struttdiada to yield better scores for
ranking. Sincek is constant and the average size of protein chains is rouggrgtant
as well, every such query can be performed in constant tilmeufes6 seconds on current
hardware,k = 20). Therefore, we can use this method to compute the k mostagimi
structures for every chain in the database in time lineanecstze of that database. From
this, we construct &-nearest-neighbor graph with nodes for every structureeatygbs
for the similarity relationships. The edge weights can Hateary similarity or distance
scores. This graph can be decomposed by removing edgesabextain weight threshold
and community detection algorithms such as modularitytetire?. Modularity clustering
optimizes the modularity of a graph. That means it partgiamgraph so that there are fewer
edges between clusters than one would expect by chance,@edeniges within a cluster
than in a random graph. The time complexity of this algoriiei® (n2log n). Modularity
clustering does not require a weighted graph, but sinceveyestructure has 20 similar
chains in the PDB, computing edge weights and applying alioid facilitates the graph
decomposition. Furthermore, setting a distance cutofééul for the interpretation of the
resulting clusters.

Picking the highest quality representatives, is a chaeagywell. Our approach is to
filter and sort the structures according to criteria such &sing coordinates, resolution
and sequence length.

Our second method implements the "Select until done” meftmd Hobohm et. at.
using the SALAMI structure search tdolThe feasibility of this method depends on the
distribution of the PDB entries in structure space. If mastctures form tight clusters, the
algorithm will converge rather quickly. However, if the ttibution is more even, then the
complexity approaches that of all vs. all comparisons.

3 Results and Discussion

As a proof of principle, we chose a non-redundant set of 2pt6tkin chains with pairwise
sequence identities less than 90%. The complexity of owrikgns easily allows the
clustering of the entire protein databank, but in order &esjup the analysis of the clusters
a smaller dataset was required. The edge weights of thessitpiraph are RMSD values.

The number of clusters (simply connected components)asemonotonically as we
lower the RMSD threshold. The number of biconnected compisneowever drops for
cutoff values smaller than®3 This can be explained by the fact that a biconnected com-
ponent needs to stay connected after one edge is removesliniplies that biconnected
components contain at least 3 nodes. As the size of the ctmtheemponents decreases,
fewer clusters satisfy that definition. Beyond AQthe numbers of clusters and bicon-
nected components are very similar. This shows that thereeay few clusters with 1 or 2
members in this region, and the clusters are still well cotete Such RMSD values might
seem too large to be meaningful, but one needs to bear in m&GALAMI does not per-
form any postprocessing or refinement of the alignment. TRIKAMI alignments are
much larger and the RMSD values are not directly comparabiiedse of other structure
alignment tools.

The clusters50.txt file distributed with the PBBlusters protein chains with a thresh-
old of 50% sequence identity. This file defines 19599 clustemsther small reduction
compared to the 25101 clusters at 90% identity. Even at swmnservative threshold,
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Figure 1. Number of clusters and biconnected componentsfferetit RMSD cutoffs of protein structures with
less than 90% sequence identity.

25% of alignments within clusters have RMSDs larger tharBR.£ur method on the
other hand only produces 13636 clusters at a threshold 8A2This result shows that our
method produces significantly fewer clusters which arectitirally more homogenous.

The modularity clustering shows the optimal solution forc®@sses. This would cor-
respond to an RMSD cutoff between 17 andAL8t remains to be seen if this really is a
natural division of the protein structure space, or simplyagtifact due to the fact that our
modularity clustering implementation does not yet consatige weights.

4 Conclusion

In their review of sequence based redundancy reductionadsfiSikic and Carugdound
huge overlaps between sets constructed with differentadsthTherefore, we do not ex-
pect dramatic differences between the structure basedibstg the same scoring function.
They are however distinct from sequence based lists. Itiresia be seen if the expensive
alignment method converges in a reasonable amount of timghdfrmore, it will be in-
teresting to see if it produces superior results whichfiystie huge amount of CPU time.
Depending on the desired application, different scores Ineaysed for the thresholds. For
example for detecting different conformations within segee clusters, the RMSD is very
well suited. However, its size dependence makes it diffituliet a good threshold for
inter-cluster comparisons. Length adjusted alignmentescare much more robust in that
respect.
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There is a lot of work still to be done. The most important taake evaluation of

different structural similarity measures, extending thedolarity clustering step to take
edge weights into account and running the calculations emvtiole PDB.
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Finding an RNA sequence that will form a chosen secondangstre is usually regarded as
an optimisation problem in a discrete sequence space, kan ibe useful to let the search take
place in a continuous space instead. A differentiable sgdtinction defined on this continuous
sequence space allows the use of optimisation algorithmsasusteepest descent or dynamical
simulated annealing that rely on gradient information. Thaeiag function contains a term that
models compatibility with the target structure according® RNA nearest-neighbour energy
model, a mean-field negative design term to disfavour unwasitadture formation, constraint
terms, and a time-dependent term to force convergence to tiosoin the discrete space of
physically realisable molecules. We have used the algorithdesign sequences for a three-
arm junction and a tRNA-like secondary structure and teitednolecules in the laboratory.
The chemical structure probing method SHAPE (Selective &rbigyl acylation analysed by
primer extension) yielded results consistent with the tasgeondary structure.

1 Introduction

RNA is a molecule with many possible applications rangir@rfrbiology to nanotech-
nology, and it is therefore an interesting problem to finduseges that will fold into a
given target structure. In order to computationally testaighed sequence before com-
mitting oneself to the laboratory, one must have a reliablgcture prediction method.
Although there has been significant progress, three-diimealsstructure prediction for
RNA molecules remains a more speculative undertaking. Fék Recondary structure
prediction however, a wide variety of somewhat successéihods is available.

The most popular of these methods are based on the neaigisboer energy model,
which begins with a decomposition of a given secondary irednto its constituent sub-
structures such as hairpin loops, bulge and interior loapd, multiway branching loops.
The free energy of folding an RNA sequenc&om the unfolded state into a given sec-
ondary structure is then approximated as the sum of loop contributions:

AGuua(s,w)= Y. AGL(s) @)
L € Loopyw)

The advantage of this rather empirical approach to freeggraiculation is that, even
though the number of possible secondary structures grossnextially with sequence
length, the minimum free energy structure, partition fiorctZ, and base pairing proba-
bilities p;; can be calculated for all unpseudoknotted secondary stegin cubic time
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via dynamic programmirly For a test set of biological sequences smaller than 700 nu-
cleotides, 73% of known base pairs were correctly prediotethis method.

A designed sequence can be evaluated according to threeedificriteria of increasing
rigour: the predicted minimum free energy structure shdoddthe target structure, the
ensemble-weighted base-pair distance to the target sh@ubs small as possible, and
finally the most stringent criterion is that the probabiliythe target structure approaches
unity.

We can calculate the ensemble-weighted base pair distarieé), i.e. the expected
number of base pairs that are different to the target strectty, with the help of the base
pair probabilitieg;; by

ds(w*) = Z p”(l — w:]) + (1 — pij)w;‘j (2)
(4,9),1<7
wherew;; = 1if i and;j are base-paired in*, andw}; = 0 otherwise. The probability of
the target structur®, (w*) can be calculated from the partition function as

Ps(w*) _ Z—le—AGf0|d(s7w*)/RT ) (3)

2 Methods

Most existing RNA sequence design algorithms approactetieas an optimisation prob-
lem in a discrete sequence space. The simplest approachtésdtively perform local
optimisation in this space and then, after each set of matiifies, evaluate the designed
sequence. This can be repeated as often as necessary teadhbkidesired quality.

This approach becomes rather slow for large target strestime to the cubic runtime
of structure prediction, and therefore more sophisticatgdrithms such as RNAinverse
RNA-SSI¥, INFO-RNA*, and NUPACK use a hierarchical approach to sequence design.
The target secondary structure is decomposed into a tregustigal elements (which
is always possible for unpseudoknotted structures) andesegs are designed for each
substructure at each level of the tree separately. Themsdigequences are then merged
and taken to be the starting point for sequence optimisatitime next higher level.

Although these methods are significantly more efficienty th@netheless depend on a
hierarchical structure decomposition and therefore sa#ficudt to adapt to more sophisti-
cated structural representations or models of foldingitfarporate kinetics. Another dif-
ficulty stems from the fact that for many target structures,gnsemble-weighted base pair
distance and the probability of the target structure arbajlproperties of the sequence.

We chose to use a continuous or alchemical representatian &NA molecule, in
which all four base types are present with different prolités at each position of the
sequence and we then optimise the base probability dititiisl

Our scoring function defined on these base probabilityibigions attempts to capture
the two most important aspects of sequence design: affipdagitive design) and speci-
ficity (negative design) to the target structure. As the isgpfunction is differentiable
with respect to the composition at each position of the secgiewe can use gradient-
directed optimisation methods. This allows us to changeyrpasitions in the sequence at
once in a correlated fashion. Our use of alchemical hybs@itees has some similarities
to the \-dynamic§ method for free energy calculations and fast ligand-ragkis well as
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the ADAPT multicopy molecular mechanics approach of Ladare & Lavery to study
and optimise DNA sequences for protein binding and preferdor structural transitions.
During the final stages of an optimisation run, we add a patitie termV,,, to our
scoring function that favours physically realisable seuas, i.e. the composition at each
position should be unity for one base type and zero for akkigthA soft constraint term
Veonstrrestrains the probabilities to plausible values.
The scoring function has the overall form

V(svo')*at) = Wold(saw*) + Vnd(saw*) + V})ur(sat) + %onstr(s) (4)

The positive design terri,g models affinity to the target structure as a sum of expected
loop contributions given the probability distributi@(s,,) over the sequence in the loop:

Vo(s,09) = S S P(sp) AGL(sp) &)

LeLoop(w) sL

The negative design teri,q tries to penalise affinity to unwanted structures. We approx
imate the influence of other possible structures by lettiagheposition in the sequence
interact with a mean-field of all other positions it does mbéfact with in the target struc-
ture but could possibly interact with in theory:

Voals, ) = = 32 D suus Bnalh ) ®)

(i) €w* kil

Herew* is the set of all possible unwanted interactions,is the probability of base type
k at positioni in the sequence, anHl,q is a simplified interaction energy between base
types without nearest-neighbour effects.

This scoring function can be regarded as a potential energstibn, from which equa-
tions of motion in sequence space can be derived and nurteiitagrated. By coupling
the “sequence temperature” to a thermostat one can perfgnangcal simulated anneal-
ing, starting at a high temperature and gradually decrgaisimtil one converges to a local
minimum.

3 Results

We have computationally tested our design method on maggttatructures. Here we re-
port on two experiments where we tested designed moleautég laboratory. Sequences
for two secondary structures were designed: a three-aratigumand a tRNA-like four-arm
junction, both shown in Fig. 1. The sequences were choseresigning 1000 sequences
for each target, filtering those for which the predicted piulity of the target structure
was below 90%. From the remaining sequences, the one witlowlest GC-content was
chosen. The chemical structural probing method SHAElective 2'-hydroxyl acyla-
tion analysed by primer extension) was used to test desigegdences. In SHAPE, an
acylating agent preferentially reacts with the 2’-hydrognoup of unpaired nucleotides. A
subsequent reverse transcription with labelled primelist@riminate at these acylated nu-
cleotides, allowing one to determine the reactivity at gaasition in the molecule via gel
electrophoresis. We show the SHAPE reactivity at each hgserisnposed over the target
secondary structure in Fig. 1 for illustrative purposed,voe wish to emphasise that the
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SHAPE reactivity

Figure 1. Relative SHAPE reactivities of the two experiméyt@sted RNA molecules overlaid over their re-
spective target secondary structures, the three-armiqun@) and the tRNA-like four-arm junction (B).

secondary structure cannot be determined directly with tiiéthod alone. Nonetheless,
the measured reactivities are consistent with the targetskary structures.

4 Discussion

Despite the simplifications used in the free energy modetla@degative design term, the
method seems to work quite well and we were able to expergtigriest our method for
two example targets. We hope to extend the method to mordedesaructural models of
nucleic acids in the future.
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Cancer and HIV/AIDS are among the worst fatal diseases woidé wrighting against these
diseases requires overcoming many challenging problems, amioich drug resistance rep-
resents a major cause of treatment failure. Understandihgareinechanisms responsible for
drug resistance is essential for the development of new dsithsimproved efficacy. In this
article, we introduce the computational studies on the kzllevents leading to drug resistance
of cancer and HIV/AIDS diseases. In particular, our stuétiesis on how the widely used anti-
cancer drug cisplatin interacts with its cellular trangpooteins, which have been found to play
a key role in resistance of the drug. In case of HIV-1 we inges$é the structural characteristic
of viral-cellular protein complexes, which represent a héamet for new drug development
strategies to avoid drug resistance caused by rapid mutattiaral proteins.

1 Introduction

Cisplatin is the one of most widely used anticancer drugssuffers, however, from sev-
eral drawbacks such as side effects and drug resistancel) séverely limit its efficacy
Cellular mechanisms behind resistance of cisplatin ardifactorial and in general not
very well understootl It is known, however, that reduced cellular accumulatibrthe
drug is a common and distinctive feature of resistant tellsis, therefore, important to
understand the cellular influx and efflux of cisplatin. Theper transporteCtrl has been
found to play an important role in cellular uptake of cispland its methionine (Met)-rich
N-term domain has been identified as a putative cisplatidibinsite¢. The reaction be-
tween cisplatin with one of the conserved Met-rich motitd|ed Mets7 was characterized
experimentally by the electronspray mass (ESI-MS), NMR;utar dichroism (CD) and
EXAFS (Extended X-ray Absorption Fine Structifrepectroscopy methods. The study
showed that cisplatin progressively loses all ammine amaride ligands and ultimately
coordinates tdViets7in a naked form. While experimental methods can provide only
information of the Pt coordination as well as the secondamnyeture types of th&lets7
peptide, an atomic description of the cisplaltiets7adducts can be provided by means of
molecular simulations.

HIV is a retrovirus which mutates rapidly its genome and Ibees capable of eluding
the action of drugs targeting the current viral protein éasg A very promising strategy
to overcome viral hyper-variability is to design compougdpable of interfering with the
interactions between viral proteins and human factorgesihe latter are not expected to
mutate normally. Transcriptional activation is an essgrtiep in the replication cycle of
HIV. Since Tat (Trans-Activator of Transcription) playseykole in viral transcription, and
exerts its function by binding viral DNA as well as severdldar proteins, it is considered
atarget of interest to develop innovative anti-HIV theesmpiThe process of trans-activation
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is complex and requires the participation of several hunmfactors (CyclinT1, CDK9,
p/CAF and others). The lack of detailed atomistic strudtimfarmation of Tat-host protein
complexes requires a molecular modeling strategy, vailfttrough molecular biology
experiments. In this regard, we aim to build a structural ehofl Tat-p/CAF. This will help
us in the understanding of possible new drug targeting HI&ttinduced transcription.

2 Methods

To study the structural and spectroscopic properties platin-Mets7adduct we use hy-
brid quantum mechanical / molecular mechanics (QM/MM) dation$ using CPMD
programt® the force matching technigtand classical molecular dynamics (MD) simula-
tions using NAMD packag@. Two models have been simulated, in which the fourth ligand
bound to the Pt is either chloride or a water molecule. Theutatled spectroscopic prop-
erties (NMR, EXAFS® and CD?) will be compared with experimental data to validate
our model.

To study Tafuiienger formation with one of the cellular partners, p/CAF, we per-
formed several multi-conformers dockings using HADDOCK!2together with MD sim-
ulations. The MD calculations were performed with NAMD pagk by using AMBER
force field ffO9SB for Tag,;i iengtr, ACKS0 and Taf, jengtr-P/CAF docking model. The
acetylated lysine topology parameter was adapted aceptdiRantan@t al 2.

3 Results

3.1 Cisplatin-Mets7

25ps long QM/MM simulatons have been performed for the atspiMets7 adduct mod-
els. The EXAFS spectra at the Pt edge have been calculateshaned good agreement
with the experimental spectrum. This indicates that thecstiral and dynamical properties
of the platinum coordination are basically reproduced by @M/MM simulations. The
calculated'H and'3C NMR chemical shifts generally agree with the experimevalies
within error bars. To study the global conformation of theolgplatinated peptides, O.&
classical MD simulations has been carried out based on the field parameters obtained
from the force matching proceddre During the classical MD simulations, the models
adopt very rigid conformations. The calculated CD spedi@isqualitative agreement
with experiment.

3.2 Tat-P/CAF

Tat does not have prominent secondary structure elemenkteiabsence of interacting
partners, which indicates its flexible nature in the unbocowiditions4. Therefore, after
minimization, all the principal conformations visited thg the molecular dynamics were
identified by a clustering analysis. Representatives ofi ehcster have been used as the
input for Tatz,;_iengts iN the docking protocol. By multiple conformation dockingdaMD
simulations, we have predicted the structural determgahiffat in complex with one of
the host cell cognate proteins, the transcriptional cosaictr and histone-acetyltransferase
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p/CAF. All of the computational results are in good agreetméth experimental data
The understanding at atomic level may help the design ohtiganterfering with the Tat
function.
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Generalized-ensemble algorithms for isobaric-isothermaéoutér simulations are described.
Extensions of multicanonical algorithm, replica-exchangéhog, and simulated tempering in
the canonical ensemble to the isobaric-isothermal ensemblexgiained.

1 Introduction

Monte Carlo (MC) and molecular dynamics (MD) simulationscofnplex systems such
as biomolecular systems are greatly hampered by the nashiima problerh?. To
overcome this difficulty, we have been advocating the usdbefjeneralized-ensemble
algorithms (for reviews, see, e.g., Ref. 3,4). Three wathkkn generalized-ensemble
algorithms are the multicanonical algorithm (MUCAthe MD version was developed
in Ref. 6, 7), replica-exchange method (REMthe MD version, which is referred to as
REMD, was developed in Ref. 9), and simulated tempering {&') These methods can
be used for obtaining accurate physical quantities in thew@al ensemble. Among them,
REM (particularly REMD) is often used because the weightdiais a priori known (i.e.,
the Boltzmann factor), while those for MUCA and ST have to btednined by prelimi-
nary simulations before the production runs.

Multidimensional (or multivariable) extensions of theginal generalized-ensemble
algorithms have been developed in many ways (see the Ref.ainddrecently the general
formulations have been given in Ref. 12.

In this article, we describe three generalized-ensemiglerighms for theN PT en-
semble. Namely, extensions of MUCA, REM, and ST from the o#&a ensemble to the
isobaric-isothermal ensemble will be given. They are thédtibaric-multithermal (MU-
BATH) algorithm'3, REM**-17 and S8 for the N PT ensemble.

2 Methods

We first briefly review the generalized-ensemble algoritfongsobaric-isothermal molec-
ular simulations. Let us consider a physical system thasistsnof N atoms and that

is in a box of a finite volumé/. The states of the system are specified by coordinates

r = {ry,re, -+ ,ry} and momenta = {p,,p,, - ,py} Of the atoms and volum¥
of the box. The potential energy(r, V) for the system is a function efandV'.
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We first describe MC simulation algorithms for MUCA, REM, a8d in the NPT
ensemble. In these cases, momenta of atoms do not have tmbidered. To make a
system an equilibrium state, the detailed balance comdisdmposed and a transition
probability w(X — X’) from an old stateX to a new stateX’ can be given by the
Metropolis criterior®.

In MUBATH simulations, we introduce a functioi (£, V') and use a weight factor
Want(E, V) = exp [-SoH(E, V)] so that the distribution functioffinu( E, V') of E and
V' may be uniform:

foot(E, V) x n(E, V)Wmn(E, V) = constant Q)

wheref, is an arbitrary inverse reference temperature defineth as 1/kgTy (ks is the
Boltzmann constant) and E, V) is the density of states.

To perform MUBATH MC simulations, the trial moves are geredain the same
way as in the usual constantP7T MC simulationg® and the transition probability from
X = {5, V}to X' = {s',V'} is given by

wmpt(X — X') = min [1, exp(—Amut)], 2
where
Ampt = Bo {H[E(s', V'), V'] = H[E(s,V),V] = NkgTo In(V'/V)}, (3)
and s = {s,s0,---,sy} is the scaled coordinates defined by = V~'/3;
(i=1,2,---,N). Here, we are assuming the box is a cube of $ide’>.

In REM simulations, we prepare a system that consist®/@fx Mp non-interacting
replicas of the original system, whefdr and Mp are the number of temperature and
pressure values used in the simulation, respectively. &plicas are specified by labels
(t=1,2,--- ,Mp x Mp), temperature byn, (m; = 1,2,--- , M), and pressure by,

(mp = 132a"' aMP)'

To perform REM MC (REMC) simulations, we carry out the follog two steps alter-
nately: (1) perform a usual constaNtPT" simulation in each replica at assigned tempera-
ture and pressure and (2) try to exchange the replicas. tethperature (specified by,
andn,) and pressure (specified by, andn,) between the replicas are exchanged, the tran-
sition probability fromX = {--- (st Vi1, P, ), (sVL VUL, P, ), )
toX' = {6 vlliT,, P, ), (sV,VULT, P, ), -} at the trial is given
by15,16

wrem(X — X') = min [1, exp(—Arem)] (4)
where

Arem = (B, — B,) | E(s1, VD) — E(Smy[ﬂ)}

(B Pony = B Pay) (VI = V1)

In ST simulations, we introduce a functiop(7, P) and use a weight factor
Ws(E,V; T, P) = exp|—S(E+ PV )+g(T, P)] so that the distribution functiofi(7’, P)
of T"and P may be uniform:

®)

(o)
fs(T, P) / av / dr W|E(r,V),V; T, P] = constant (6)
0 \%4
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From Eq. (6), it is found thag(7, P) is formally given by

g(T,P)=—In {/000 dV/Vdrexp [—B(E(r,V)+ PV)]} , 7)

and the function is the dimensionless Gibbs free energypxfoea constant.

To perform ST MC simulations, we carry out the following twess alternately: (1)
perform a usual consta® PT" simulation and (2) try to update the temperature and pres-
sure. The transition probability frolt = {s,V;T, P} to X' = {s,V;T’, P’} for this
trial is given by®

wst(X — X') = min [1, exp(—Aq)], (8)
where
As= (B = B)E(s,V) + (B'P' = BP)V — [g(T", P") — g(T, P)]. 9)

For MD simulations with MUCA, REM, and ST in th& PT ensemble, the actual
formulations depend on constant temperature and preskmétlams. Here, we employ
the MD methods with the Martyna-Tobias-Klein (MTK) algdnit?®, whose equations of
motion follow No£?? and Hoovef for the thermostat and Andersérior the barostat.

While the weight factors in REM simulations aaepriori known, those in MUBATH
and ST simulations have to be determined before the sironkati

3 Results and Discussion

In order to verify that the generalized-ensemble algor#itiscussed above can be effec-
tive for conformational sampling and give the same resulésperformed MD simulations
with the three generalized-ensemble algorithms. We usgdtara of an alanine dipeptide
in 73 surrounding water molecules and the system was placgdubic cell with periodic
boundary conditions. Both of the backbone dihedral anglasds) of the peptide were
initially set to 180.

First, we performed the two-dimensional REMD simulationheTsimulation time
was set to 2.0 ns. We used the following six temperatiiie-( - ,7s) and four pressure
(Py,---, Py) values: 280, 305, 332, 362, 395, and 430 K for temperatwiédah 65, 150,
and 250 MPa for pressure. At the replica-exchange tridheeiexchanging temperature
(T-exchange) or exchanging pressufedxchange) was chosen randomly.

Fig. 1(a) shows the time seriesBfand P in one of the replicas and Fig. 1(b) shows the
time series of the label of the replicas in the simulation3it K and 0.1 MPa. From these
figures, it is found that random walks '+ P space were realized in each of the replicas.

We then performed 24 MUBATH simulations of 2.0 ns, where thialtsimulation time
was 48 ns so that it is equal to that in the REMD simulation. doheof the simulations,
different initial velocities were given.

Figures 1(c) and (d) show the probability distributiongsbindV from the MUBATH
simulations. Fig. 1(a) shows the time serie§adnd P in one of the replicas and Fig. 1(b)
shows the time series of the label of the replicas in the sition at 430 K and 0.1 MPa.
From Fig. 1(c), it is found that the MUBATH simulations gaveiaiform distribution in
the range where the density of states was obtained acguiratble REMD simulation and
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Figure 1. Results of the two-dimensional REMD simulation:t&)time series oI and P in one of the replicas
and (b) the time series of the replica label at 430 K and 0.1 Miédagarithm of the probability distributions

of £ andV (c) in the MUBATH simulations and (d) for th& PT" ensemble at 280 K and 250 MPa (left) and at
430 K and 0.1 MPa (right).
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Figure 2. Contour maps of probability distribution of the kiaene dihedral angleg and+) in the simulations
with (a) REMD, (b) MUBATH, and (c) ST and (d) in the conventarisobaric-isothermal simulations. In these
figures, the probability distributions at 298 K and 0.1 MPa glotted in logarithmic scale.

that the distribution of the MUBATH simulations was much etidhan the ones for the
NPT ensemble (see Fig. 1(d)).

Twenty-four ST simulations of 2.0 ns were also carried outiclv gave us the same
number of sampled data as in the REMD and MUBATH simulatidngach simulation,
different initial velocities were given. We used the sanmafierature and pressure values
as in the REMD simulation.

Fig. 2 shows the probability distributions of the backboitedral angles at 298 K and
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0.1 MPa in all the simulations. Compared with the simulaiaith REMD, MUBATH,

and ST, we also performed 24 conventional isobaric-isataésimulations of 2.0 ns at
298 K and 0.1 MPa with different initial velocities. The ddral angle distributions in
the simulations with the generalized-ensemble algorithatsa small peak if° < ¢ <

90° and —90° < ¥ < 90° although there was no peak in the range in the distribution
of the conventional simulations. All the simulations wittetthree generalized-ensemble
algorithms were able to reproduce the distribution obtjmrevious|y®.

4 Conclusions

In this article, we presented the extensions of MUCA, REMI, & for isobaric-isothermal
molecular simulations. These algorithms can be effectigthds for conformational sam-
pling and give accurate physical quantities in the isobaathermal ensemble. Therefore,
one can use the generalized-ensemble algorithms to stoghetature and pressure effects
on complex systems such as biomolecular systems.
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We investigate influences on the secondary structure of érieeomajor alloforms of the
Alzheimers peptide, 81 _42. Specifically, we study how the pH and binding of D3, a 12-
residue D-peptide with demonstrated anti-amyloid effedtecbAB31 —42 folding. We demon-
strate that, under slightly acidic conditions, protonatiof the three histidine residues in
ApB1—42 promotes the formation g#-sheets via a reduction in electrostatic repulsion between
the two terminal domains. Our studies further reveal crugpkats of A8; _ 42 important for

its interaction with D3, involving four negatively chargessidues in the N-terminal section of
AB1—_42. The binding of D3 was found to induce large conformationandes in the amyloid
peptide with a reduction if-sheet being the most significant effect possibly explairtirey
observed aggregation-inhibiting properties of the D-fakept

1 Introduction

Protein folding abnormalities are an important class ohpgénic causes of diseases
like Alzheimer’s and Parkinson’s disease. In Alzheimeisedse (AD) post-translational
cleavage products of the amyloid precursor protein (APRg haen identified as a clinical
hallmark in disease development and progression. Of thedé&®®age products & 4

is recognized as the most important alloform based prisnanil roles in eliciting neu-
rotoxicity. Conformational transition to a predominanflysheet of the extracellular /A
peptide resulting in its aggregation into water-solublgaers is believed to be crucial
in the initiation of Alzheimer’s dementia. The peptide hagb shown to sample a wide
range of conformations frori-sheets to random coil and helical structures. The aggrega-
tion of A5 monomers into toxig3-sheet-rich oligomer structures is believed to depend to
a significant extent on the sampled conformational stateefrionomer and factors influ-
encing it, including the pH, metal ions, lipid membraneg] #&me presence of preformed
oligomers-2,

The molecular events surrounding its causative role in AlRaes5 a viable target for
drug discovery purpose. Different therapeutic stratebese been employed exploiting
conformational aspects ofAincluding peptidic inhibitors, which can prevent the forma
tion of neurotoxic aggregates. Peptide drugs, howevdersitbm a significant drawback
that is the fast rate at which they are cleared from circoifably endogenous peptidases.
Approaches employed in circumventing this disadvantagleidte D-peptides. Recently a
D-enantiomeric peptide, D3 (a 12-residue arginine-rightioe), with anti-amyloid aggre-
gation properties, was discovered by mirror-image phagpla§. In AD mice models,
D3 was not only demonstrated to improve the pathology andwen it was also shown
to be orally bioavailabte
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In this study we use multiple microsecond-long MD simulasion explicit water to
study various influences on the secondary structure of th@dptide. We present a per-
spective on the intramolecular effects of the histidinet@mation state on the sampled
structures of &,_4, and how this may be the basis for its increased aggregatitet-ki
ics at acidic pH. Using the insights afforded bys Aonformational studies we proceed
to investigate the reported anti-amyloid properties of D8.unravel D3's mechanism of
amyloid aggregation inhibition we employ a combination gfi@bal optimization method
and MD simulations.

2 Methods

Structural Models Initial coordinates for the D3 peptide were generated ushey
Dundee PRODRG2 server. The solution NMR structures PDB 1f00@ 3, _ 4> obtained
in apolar solvent was employed as starting configuratiortfferMD simulations. If not
stated otherwise, histidine residues were modeled asatevith only the delta nitrogen
protonated. The N-termini and C-termini were respectiatigsen to be protonated and
deprotonated in both D3 and#peptides to mimic the physiological states at pH 7.4.

Molecular dynamics simulations Multiple MD simulations were performed beginning
with a 100 ns simulation of D3 using the GROMOS ffG43a2 foretffi The peptide was
centered in a cubic simulation box with a 1 nm distance altbsetween the peptide and
the edges of the box treated with periodic boundary contitidhe Particle-Mesh Ewald
method was employed for treating long-range electrostatith a 1.4 nm cut-off used for
calculating short-range forces. The box was solvated usiaGPC explicit water model,
and Na and CI ions added to obtain a NaCl concentration of 150 mM and aehiev
charge neutrality. The solvated peptide was then minim&etisubsequently equilibrated
in a 1 ns MD simulation with position restraints on all nordhygen atoms of D3. The
restraints were then turned off and the 100 ns productiorparformed at 300 K in an
NPT ensemble. The procedure followed for the preparaticth@MD simulation of D3
was also employed for the MD simulations oBA 42, followed by 1us production runs.
To investigate the effect of histidine protonation of;A 45 folding we performed another
1 us MD simulation with the three histidine residues ofA 4, (His6, His13, His14)
protonated on both imidazolyl nitrogen atoms. In additimam the 1us MD simulation
of ApB;_4o with neutral histidine residues three frames dumped at &3h7 ns and
888 ns were each subjected to further 335 ns MD simulatianalifhg ~ 1 us). These
MD simulations were used as a reference for quantifying ffeceof D3 binding on
the secondary structural features ofA 4. All MD simulations were performed with
GROMACS.

Basin-Hopping global optimization The basin-hopping (BH) approach to global opti-
mizatior! is analogous in idea to the Monte Carlo-minimization apph®a Moves are

proposed by perturbing the current geometry, and are astaptrejected based upon
the energy difference between the local minimum obtainechlsymization from the in-

stantaneous configuration and the previous minimum in tle@nchLarge steps can be
taken to sample the energy landscape, since the objectivesisp between local minima.
Furthermore, there is no need to maintain detailed balaf@nwvaking steps, because
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Figure 1. Left: DSSP plots for secondary structure trams#iin A3; 42 with (a) neutral and (b) protonated
histitdine residues during As MD simulations. Right: The B;_42 structures for the centers of the three most
populated clusters sampled in the MD simulations. The pefgidelored according to secondary structure: red
for B-sheet, blue forv-helix, purple forr-helix, green for bend, yellow for turn and white for coilwtture. The

N- and C-termini are respectively shown in blue and red beads.

the BH approach attempts to locate the global potentialggnerinimum and is not in-
tended to sample thermodynamic properties. The BH alguoriihs been implemented in
the GMIN program. We used the oligomer-generation procedure in GMItd generate
6000 AB; _42/D3 complexes from three different® 4o structures and the most favored
structure of D3. After their initial generation, the comyds were optimized using 500 BH
steps with dihedral angle moves and small rigid body rotet@nd translations applied to
D3. All the systems were treated with the parameters fronrCtHARMM?22 force field.
From the 6000 complexes 100 low-energy structures weretseldor subsequent MD
simulations with care taken to ensure that the thrée_A, starting structures employed
for the BH runs were equally represented. The MD productiors were performed for
10 ns (totaling 1us) in explicit solvent using the GROMOS ffG43a2 force fididllowing

a 1 ns equilibration run.

3 Results and Discussion

The effect of protonating both imidazolyl nitrogen atomsa ishange of the overall charge
of AB1_4o from —3 to zero. We therefore useﬂ%:42 and A3)_,, in the following to
refer to A3, _ 4o with neutral and positively charged (also denoted as pedtmt) histidine
residues, respectively. The secondary structure transitin each of the two Ls MD
simulations were monitored using the DSSP progdfariihe resulting plots are shown in
Fig. 1 along with representative structures for the threstipopulated clusters as obtained
from conformational clusterifig. We observe a stabilization of the N-termimahelix and

a higher amount oB-sheets for 4y _,, compared to ﬁf’;ﬁ. Analysis of the underlying
molecular basis for these observations reveals that themqation of the histdine residues
facilitates contacts within the otherwise negatively deal N-terminal segment via a re-
duction in the local net charge of the first 23 residues, whaildo allows contacts with
the hydrophobic C-terminal. In @:42 the N- and C-terminal segments avoid interacting
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Figure 2. Fractional secondary structure contributiortsioled for (a) AG‘?:M from a 1us MD simulation, (b)
three 335 ns MD simulations using coordinates qﬁ‘fgm dumped at 713 ns, 817 ns and 888 ns, (c) D3-bound
A[J’f’:42 from 100 individual 10 ns MD simulations, and (dﬁ%ﬁ42 from a 1us MD simulation.

with each other, which is likely a result of charge incomipidity between the hydrophobic
C-terminal and the hydrophilic N-terminal. The hydroptmwiniteractions between the two
terminal sections in &Y_,, induce a significant increase ihsheet formation. This is an
important driving force for the fast aggregation kinetitserved for the amyloid peptide
at acidic pH, which should be further enhanced from reduction in eletétic repulsion
between A molecules. This result agrees with the observation thatrelstatic repul-
sion prevents & aggregatioh The effect of a pronounced increasedrsheet content
and a reduction of coil structures due to the protonatiorheftistidine residues is also
very well displayed by the fractional secondary structurigsLobtained from the s MD
simulations of A3?~,, and A3?_,, in Fig. 2.

From the 100 ns MD simulation for the D3 peptide we observatittie conformational
space is dominated by an extended conformation, whichteegom an attempt to mini-
mize electrostatic repulsion between its five argininedess. \We employed this structure
for our subsequent simulations investigating D3 binding 3 _ 4> (with neutral histidine
residues). For & _4» we selected three different structures from thgsLMD simu-
lation making sure that helicalj-strand and coil secondary structures were adequately
represented. For the 10 ns MD simulations, which were pexédrfor 100 AS; _4»/D3
complexes, the Coulombic and Lennard-Jones interactiergeas were decomposed into
residual contributions based on the interaction of eagh_A>» amino acid residue with
D3. The result of this analysis, averaged over 10 ns and I8Qlaiions, revealed that
the interaction is mediated by strong electrostatic ditvadetween the arginine-rich D3
and AB;_4o since the strongest interactions are obtained for the fegatively charged
aspartic and glutamic residues in the N-terminal segmeAi®f 4». We then investigated
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the effect of D3 binding on the secondary structure of thtg A> monomer (Fig. 2). We
calculated the fractional secondary structure units f8riithe A3, _42/D3 complexes for
each of the 10 ns MD simulations and averaged these valuedh®/d 00 systems. We
compared the results with the secondary structure cotiifsisampled in three 335 ns
MD simulations, which were initiated with the/A_ 45 structures used for the generation
of AB;_42/D3 complexes. The overall effect of D3 onBA_4» involves a significant de-
crease in3-sheet (58.3%) and helical (21.5%) contents and an incrd®s&é%) in total
coil structures (coil, turn and bend) suggesting that timelibig of D3 to A5, _42 induces
conversion ofs-sheets and helices into random coil states. The destrucfig-sheet in
A[1_42 monomer probably provides an explanation for the amylogteggation inhibition
observed both in vitro and in vivo [49].
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1 Introduction

A broad range of human diseases are known to arise as a cemsegof protein aggre-
gation and misfolding. A specific class of these so calledlamyproteins are known to
generate fibrillar aggregates. Specifically these aggeedave a cross-sheet structure,
where the3-strands run perpendicular to the fiber's long axis, and #ukbone hydrogen-
bonds stabilize the sheets propagating along the direcfighe fiber. Well known ex-
amples for diseases involving amyloid proteins includehgimer’s disease, caused by
aggregation of the A peptide, and the transmissible Creutzfeldt-Jakob Diseassed by
aggregation of the human prion protein, PrP.

Although considerable progress has been made in recert yeeard the elucidation
of the structure and properties of amyloid fibrils, littlekisown about the structure and
dynamics of the oligomers that are involved. The precisgitmof pathogenicity in amyloid
diseases remains elusive, although current evidence sisgipat the soluble oligomeric
precursors, rather than the fibrils themselves, are theaytospecies. Further studies that
help to reveal the molecular mechanism of the multi-stejggse of amyloid aggregation
are needed to find the missing link between amyloid fibrils #eddisease to which they
are connected.

The aim of the present work is to study the oligomerizatiothefpeptide GNNQQNY.
GNNQQNY is a polar heptapeptide from the N-terminal pria@tedmining region of the
yeast prion protein Sup35. The atomic resolution crystakcstire of GNNQQNY has re-
cently been determined by Eisenberg and co-workers usiray xnicrocrystallograplfy
There is strong evidence that the microcrystals formed byl@dogenic peptides or pro-
teins are closely related to their amyloid fibfilsWe aim to probe the self-assembled
structure of GNNQQNY using peptideB, the coarse grained)(fo€ze field proposed by
Bereau and Deserfio We perform replica exchange molecular dynamics (REMD)-sim
ulations starting six monomeric GNNQQNY peptides in randstarting positions, and
analyze the results in terms of microcanonical and canbgientities.

2 Methods

peptideB Force FieldThe GNNQQONY peptide (Gly-Asn-Asn-GIn-GIn-Asn-Tyr) wagre

resented by the coarse grained (CG) force field pepfid€Be primary reason for using a
coarse-grained force field was due to the time scales assdaidgth peptide aggregation,
which generally extends over a time scale much beyond a secand. Though molec-
ular dynamics (MD) simulations of atomistic models havecheal the microsecond time
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scale, it is not possible to use standard MD simulations plieix solvent to study aggre-
gation processes extending over a time scale much beyoncrasecond. In the peptideB
model the backbone is represented by three beads per resitlile only one bead per
side chain is used. The side chain bead is the location of ghat@n coining the name
peptideB force field. The peptideB forcefield was parameterito reproduce both local
conformations and tertiary structures. The relativelyhhigsolution of backbone beads al-
lows for the force field to model physically relevant secayddructures, such assheets,
a-helicies, and random coils.

Replica Exchange Molecular DynamicBhe force field is used in conjunction with the
Espresso simulation package described below. All simaratiwere run using REMD,
where multiple MD runs of the same system (replicas) are mnlsaneously at different
temperatures. After a specified number of time steps, &plid neighbouring tempera-
tures can be exchanged, provided that a Metropolis critassatisfied. This procedure
allows high-energy structures to be accepted for the r@plad higher temperature. The
associated configurational changes then migrate to theasmt lower temperatures when
exchanged with each other. We performed 20 independent REMDIations starting
from six monomeric GNNQQNY peptides in random starting poss, each at 16 differ-
ent temperatures ranging from approximatety — 366 K. We used a cubic box with edge
length 4954, giving a concentration o’ ~ 80mM. We let the system relax for 10s
before collecting statistics for analysis. Productionsriasted for 4Qus.

Analysis For the identification of standard transitions and theirrabteristics, several
impact parameters, such as the potential energy and twereliff orientational order-
parameters, were collected during the REMD simulationsthedheat capacity was calcu-
lated using the weighted histogram analysis method (WHAM)

3 Results and Discussion

Low EnergyWe found the minimum energy structure in every temperatuest of every

simulation. Although the minimum energy structure does gie¢ any thermodynamic
information, is does provide a clue as to what peptideB miigick to be the ground state
of the system. As seen in Fig. 1, peptideB has successfulhpleal ag-sheet aggregate,
as is expected for GNNQQNY

Heat Capacity The heat capacity is a measure of the change in energy véiseghange
in temperature. As a system undergoes a major structurdbmroation change (phase
transition), small changes in temperature produce prapeaily larger changes in energy
giving rise to a peak in the specific heat curve. In our work, obgained the average
specific heat as a function of temperature from a canonical WH#alysis. Error in the
specific heat was obtained by taking the standard deviatidgheoaverage specific heat
of the system at the temperatures of the replicas over allu@6.rAs seen in the Fig. 2,
the average heat capacity behaves in the manner expectdtfoictural transition, which
transforms from the dissociated phase to the aggregatesd pfiae error bars tell us with
certainty that the peak in the specific heat is not due to narfticctuations.
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/
Figure 1. A minimum energy structure from one of the 20 GNNQQN¥s: This structure was sampled at

~ 189 K. We see that although GNNQQNY form@-sheets with paralleB-strands, the strands are not in-
register.
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Figure 2. The heat capacity is plotted against temperatuobt@sned from our REMD simulations of six GN-
NQQNY peptides in a box. Temperature in CG simulations is n@say to define as temperature in atomistic
simulations, but 1 temperature unit in the peptideB model is@pmately equal to 300 K. Thus the peak at
~ 0.9 temperature units indicates a phase transition 867 K.

Orienlational Order Parameterd\Ve also looked at the orientational order paramefgrs
and P,, which are widely used for studying the properties of amat fluids, and are
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Figure 3. The averag®, and P, as a function of temperature show h@strand orientation evolves with
temperature. Temperature in CG simulations is not strictlyppridonal to temperature outside of the simulation,
but 1 Temperature Unit is approximately equal to 300 K.
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Here, the directod is a unit vector defining the preferred direction of alignten is
defined as unit vectors linking the peptides termini fromkhto the C terminus, an&v
is the number of molecules in the simulation box, i.e., siptjukes in this study. The
director is defined as the eigenvector of the ordering matrat¢ corresponds to the largest
eigenvalue.P, describes the orientational order of the system and diguaites between
ordered and disordered conformations, i/, will be 1 if the monomers are arranged
in either a parallel or antiparallel conformation and wiinish for the system in a fully
isotropic state. The polaP, describes the polarity of the system, i.e., how much the
molecular vectorg; point in the same direction. It will be 1 if the monomers amaaged
in a parallel conformationP; thus allows to discriminate between parallel and antipziral
mixed ordered aggregates. At low temperature, we seeéhand P, are high, whereas at
high (~ 1) Temperature®; and P, are low (~ 0). At low temperature, we see th&t and
P, are high, whereas at high-(1) Temperature?, and P, are low ¢ 0).

With this knowledge, we can conclude that that peptideB hasapability of aggre-
gating randomly structured monomers into ordered parbd&-sheets.
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The etiology of Alzheimer's disease is considered to be binte interactions between the
amyloid3 (AB) peptide and neural cell membranes causing membrane disruptibina
creased ion conductance. The effects4# on lipid behavior have been characterized ex-
perimentally, but structural and causal details are lackikge employ atomistic molecular
dynamics (MD) simulations totaling over 4.5 microseconds muation time to investigate
the behavior ofAS8; 42 in zwitterionic and anionic lipid bilayers. We consider artsmem-
branes-sheets (monomer and tetramer) and a helical structure pridse the membrane. In
all MD simulationsAS; — 42 remains embedded in the bilayer, with slow unfolding of the-pep
tide monomer in the bilayer occurring in some cases. The N-talnsiggment of the peptide
outside the membrane strongly interacts with the lipid headjgs, leading to a disordering of
the headgroup arrangement. We observe an increased gtédyilihe 3-sheet tetramer due to
interpeptide interactions.

1 Introduction

Alzheimer's disease (AD) is a neurodegenerative disordeo@ated with synaptic loss,
abnormalities in functioning of neurons, neuronal celltdeand extracellular accumula-
tion of senile plaques composed of the neurotoxic amyt{@:3) peptide. A3 is derived
from the amyloid precursor protein, a type 1 membrane ialeglycoprotein through se-
guential cleavage bg- andv-secretases producing 40 amino acids length (Ag) and 42
amino acids length (B42) peptides. The more hydrophobigi4 is the prevalent isoform
seen in amyloid plaques and has a greater tendency to atgiegafibrils and plaques.
There is acceptable evidence suggesting thaeRerts its cytotoxic effect by strongly in-
teracting with membranes of neurons and other cerebrai.céllpotential pathway for
A toxicity lies in its ability to alter biophysical membraneoperties—=. Several studies
have shown the ability of A to form ion-channels in lipid bilayers causing an imbalance
in calcium homeostasis. It was reported that permealibizaif membranes was caused
by oligomer$ but later Ambroggio et al.showed the /&, _,, monomer to intercalate the
membrane, too. There is sufficient experimental evidenogodstrating the effects of A
on membranes, but information about structural transftiona of A5 in membranes is
still lacking. We use atomistic 500 ns MD simulations to ekasrthe behavior of &; 4
when preinserted into zwitterionic POPC and DPPC, and &iB®PG bilayers. The
A[1_45 peptide remains within the bilayer throughout the simoladi Our results agree
well with experimental findings by Mason et%ivhere they reported that solublesA_4o
peptide intercalates deep into the plasma membrane hythataore, whereas aggregated
forms were seen interacting with the membrane bilayer ahéaslgroup-water interface.
Though A3, _,, was the peptide under stitjypoth A3, _ 4, and A3;_4, alloforms share
common features in their ability to alter biophysical prdjgs of membranes.
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Figure 1. Initial structures for (a) monomeriesheet, (b) tetrameric monomeriesheet, (c) helix with K16 at
the membrane-water interface (Hel-16), and (d) helix with B2the membrane-water interface (Hel-23). The
peptide is rendered as a new cartoon and colored based doedgpe, bilayer phosphorus atoms are shown as
spheres, and bilayer tails and water molecules are not shavatefrity.

2 Methods

Starting structuresThe two initial A3;_4o Structures used in our simulations aresa
sheet and a helical conformation, respectively. The tramsbmane3-sheet was obtained
from a study for the &,_4, monomer and small oligomers with an implicit membrane
model using a global optimization methiodThe structure is comprised of an antiparal-
lel 5 sheet with 2 turn regions within the membrane, and an N-tehdi-hairpin outside
the membrane. The membrane-spannihgheet is inserted into the lipid bilayer such
that the more hydrophobic residues (17-42) are locatedirwitie membrane, whereas
the more hydrophilic residues (1-16) occupy the extratallspace. We study this trans-
membranes-sheet as a monomer and a tetramer (Fig. 1(a) and (b)). Tloadetarting
structure used is a helical structure obtained from an NMigysbf A3, 4 in an apolar
solvent (PDB 1BA4). We extended this 40 residue peptide lojrapthe two hydrophobic
residues 141 and A42 to study the role of the extra two residugeptide-lipid interac-
tions. Previous studies have revealed an increased sighitvided by 141 and A42 to the
antiparallel3-sheet when compared ta34_48. The helical structure was studied for two
insertion depths: with K16 (Hel-16) and with D23 (Hel-23)tla¢ membrane-water inter-
face (Fig. 1(c) and (d)). All our simulations were carried atithe physiological charge of
—3 for AB;_42, With lysine and arginine residues protonated, asparticgiatamic acid
residues charged, and histidine residues modeled unchafrpe N- and C- terminals were
capped to nullify the effect of terminal residues in pepiiigéd interactions.
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Molecular dynamicsMD simulations were performed using the GROMACS 4.0 package
The A5, 4o peptide was described using the GROMOS96 53A6 force fieldzadipid
models with modified Berger force field parameters for usé whie GROMOS96 53A6
force field. Initial coordinates of 128 lipids for POPC, DPPC and POPK@yli's, equi-
librated with water for 40 ns were obtained from Kukol's wask lipid model§. The
AB1_4o peptide was inserted into the pre-equilibrated lipid meanbrusing the Inflate-
gro script?, the whole system then solvated with SPC water molecules, ddanterions
were added to balance the peptide charge, and 0.1M NaCldsidtao bring the system
to the near physiological salt concentration. The simorfetiwere carried out in a 6.5

6.5 x 9.5 nm box. An initial equilibration under isothermal-ibacic (NVT) conditions
was performed for 100 ps during which the protein heavy atantsphosphorous atoms
of the lipid headgroups were restrained. Here, the V-restt@rmostat was used to reg-
ulate the temperature of thesA 4o peptide, lipids and solvent/ions separately at 298K
for the POPC and POPG simulations and at 325K for the DPPClalimns. After this,
the systems were equilibrated for 30 ns under isothernoslaisc (NPT) conditions using
the Nose-Hoover thermostat along with semiisotropic Ralid-Rahman pressure cou-
pling. The bilayer normat-direction andry plane were coupled separately maintaining a
constant pressure of 1 bar independently in all directidiasig-range electrostatics were
calculated using the Particle Mesh-Ewald method in conmeatith periodic boundary
conditions. Van der Waals and Coulombic interaction cstefére set to 1.2 nm and the
LINCS algorithm was used to constrain all bond lengths.dvalhg equilibration, produc-
tion MD runs were performed for 500 ns for each system. Hax@#rameter settings were
similar to the NPT equilibration step but with all restraifteing removed. The time step
for integration was 2 fs with coordinates and velocitiesssbgvery 20 ps for analysis.

3 Results and Discussion

The final structures after the 500 ns MD simulations of monicrend tetrameric &1 _4-
are shown in Fig. 2. In all simulations the peptide remainetedded in the lipid bilayer
and structural changes occur to a varying degree mainlyraipg on the lipid type. An
increased stability is observed for th&A 4, tetramer preinserted in a POPC bilayer.

AB1_42 in POPC bilayerOur results for the POPC bilayer are in accord with experialen
results of Ambroggio et &. where the 8;_4, peptide remained well embedded in the
lipid environment composed of POPC or POPC/SM/Chol altedohesion between the
membrane components and membrane permeability. The gtatileet structure seen in
our simulations is supported by experimental wénkhere it was shown that 2 _ 4 is
present as @-sheet in a POPC bilayer. A further study reportegheet content in the
membrane hydrophobic core of6A_42 incorporated into POPC/POPS mixed bilayers,
which destabilizes the membrane, thereby increasing itagability propertie¥. Similar

to the 5-sheet, the helical peptide did also not exit the bilayere Hel-16 system moves
upwards so that residues E22/D23 reach the membrane-wetegace. Both the sheet and
helix structures were stable within the membrane. A furthereased stability is observed
for the 5-sheet tetramer both within and outside the membrane. kvitie membrane
the 5-sheet is stabilized due to intermolecular salt bridgesveen D23 and K28, and
side chain interactions formed between interpeptide Iplunbic residues. Outside the
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Figure 2. Final structure from the 500 ns MD simulations wigfit{ monomeric A3 _42 in a POPC (PC), DPPC
(DC) and POPG (PG) bilayer; (right) tetrameri@@A_42 in @ POPC bilayer. See Fig. 1 for explanation of the
graphical representation. The peptide residues rendsrpthk spheres are involved in H-bond formation with
the water molecules entering the bilayer.

membrane the N-termindl-hairpins form stable interactions with each other instefd
with the bilayer surface. Similar to our findings Lal and coriters showed that A 4o
forms stable tetramers when incorporated within the meneta

AB1_42 in DPPC bilayer Simulations with the DPPC bilayer show in general a larger
loss of secondary structure content for both sheet andata@nformations within the
membrane core compared to the POPC simulations. The Igésofitent for the prein-
sertedg-sheet facilitates excessive entry of water moleculestimchydrophobic core of
the bilayer. The helical peptide inserted at K16 loosesviteelix secondary structure to
a considerable extent within the membrane, whereas thédpeipserted at D23 adopts
a more stablev-helix within the membrane. The®A_4» residues outside the membrane
interact strongly with the lipid headgroups, leading to Myerminal section laying par-
allel to the bilayer surface with loss of the helical struetuOur findings for the DPPC
bilayer do not completely correspond to the results of MDwations performed by Xu et
all4, where they carried out simulations with3A_,, (PDB 1BA4) preinserted with K28
at the membrane-water interface. They observgd A, exiting the hydrophobic core and
associating with the bilayer surface. They also reportatd A%, 4, maintains arm-helix

as secondary structure even at the membrane-water irgeBaich difference in results are
probably due to the different insertion depths of the pepfitifferent force fields employed
in the studies, and different methods used to insert thadgeeptto the lipid bilayer. Sim-
ulations carried out by Lemkul et &.with the same /8, _,( structure in a DPPC bilayer
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reported the peptide to remain partially embedded in theybil when inserted with K28
at the membrane water interface and observed complete flashelicity within the first
10 ns. When 8, _ 4o peptide was inserted with K16 at the membrane water intesfie
peptide remained embedded in the bilayer and retainkdlicity in the central segmelit
These findings agree with our results faf-A 42 with K16 is at membrane-water interface.
The presence of peptide within the central hydrophobic obtee membrane is supported
by experimental findings of Mason et%l.

AB1_42 in POPG bilayer The simulation results for the POPG bilayer are similar to ou
results with the POPC bilayer, which shows that once thdg@epts entered the membrane
the peptide behavior in the hydrophobic core is dominatethbyamount of hydrophobic
mismatch between the hydrophobic length of the, A, peptide and the hydrophobic
thickness of the membrane it spans. The head-group typelessfimportance for the
stability of the peptide in the membrane. Since the hydrophmismatch between® 4,
and POPC and POPG, respectively is smaller than for DPP&nrambrane B, _4 is
more stable in the two former lipid bilayers. The Hel-16 pe@tmoves upwards so that
E22/D23 reach the bilayer-water interface as is also okskivthe POPC bilayer. The
B-sheet and helical structures ofA_4> in the POPG bilayer allowing excessive entry of
water molecules into the hydrophobic core of the bilayer.
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Here we report replica-exchange molecular dynamics (REMBukition of a biantennary
complex-type N-glycan in water, fully characterizing thendynical conformation. The effect
of the common N-glycan modification, introduction of the bigggiGIcNAc, is also examined.
Five distinct conformers were found for the N-glycan. Thefoomational variety was signif-

icantly reduced upon the introduction of bisecting GlcNAggving only two forms as major
conformers. The results provide an insight into the mechanisftonformation selection” for

the specific binding to the target protein.

1 Introduction

Dynamical aspect of oligosaccharide conformation is a thuenderstand glycan-protein
recognitions that regulate many biological processes.tipalconformations of glycan
and their modification for instance by chemical substitgi@re important for the spe-
cific binding to the target protein. On the other hand, theilflexmotion through many
stereoisomers makes the characterization of global covation extremely challenging.
In general, glycans are not well resolved in X-ray crystalaures. Nuclear magnetic res-
onance (NMR) spectroscopy-based analysis is used mongsindg, providing the dynam-
ical information of glycosidic linkage. Molecular dynareifMD) simulation is a powerful
alternative. It not only complements experimental dateeltga reveals the dynamical mo-
tion of tertiary structures. Nevertheless, the simulatsdimited to small glycans in water,
because the conventional MD simulation hardly samplesoatible conformational space.

Our aim is to characterize the global conformation of glytiaat is important for the
selective binding to proteins. To that end, we applied ogpéxchange MD (REMD)
method to reveal the energy landscape of conformational spacenfereitremely flex-
ible molecule.

2 Computational Method

We performed REMD simulations of a biantennary complexetisglycan with (Bi9) and
without (BiB10) the chemical modification, bisecting GlcblAFig. 1). GlycamO06 force
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(1-6.arm)  GalB1-4GIcNAcS1-2Manat
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(1-3arm)  Galp1-4GIcNACB1-2Manat1”” (core)

Figure 1. Sequence of biantennary N-glycan Bi9 and BiB10.

field parametéerfor oligosaccharide and TIP3P model for water moleculesweed. 64
replicas were used with the temperature range from 300 K@dGT he replica exchange
was tried every 1ps. REMD simulations were run for 88in total. The average accep-
tance ratios of replica exchange was 49 %. In Fig. 2 we showviittie series of replica
exchange at the lowest temperature (T = 300 K) as well as tetyre exchange. We
observed random walks in both the ‘replica space’ and thepgerature space.
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—é
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Time (nsec) T|me nsec

Figure 2. Time series of replica exchange at T = 300 K (left) @ncperature exchange (right).

3 Results

3.1 Glycosidic Linkage Conformation

Fig. 3A shows the free-energy maps of the orientation of MaBMarSl linkage
for Bi9. The linkage adopts five distinct conformers whicHfati in dihedral an-
gles ¥ (C,-O-C;-Cl) and (O-G-Ci-C)). Note that 50 ns conventional MD simula-
tion completely missed some of important conformers (FB). Ihe dihedral angl&®
(C5-C1-0-Cy) is rather uniform~70°, in consistent with thexo-anomeric effectl an-
gle has three minima around 6Qa), 96° (b), and -174 (c). First two conformers are
energetically favored. These conformers preferentiallgphgauche-gaucherientation
(=42 (a), 48 (b)), althoughgauche-transorientation is also possibles(= 168 (a')).
Three conformersa b, anda’) dominate over the other twa @ndc’). The bisecting
GIcNAc shifts the preference dif angle from 60 (a) and 90 (b) for Bi9 to 9¢° (a) and
180 (c) for BiB10 (Fig. 3C). Two conformersa(anda’) are significantly less populated,
whereas the population of conformeincreases.
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Figure 3. (A)®, ¥ and¥, w free-energy maps for Bi9. (BY, w free-energy map for Bi9 from 50 ns conventional
MD. (C) Difference free-energy maps (BiB10 - Bi9).

3.2 Global Conformation of Bi9 and BiB10

Fig. 4 shows the representative conformers and their ptipntaobtained from the clus-
tering analysis for Bi9 (A) and BiB10 (B). The global confaxtion nicely correlates to
the local Mam1-6Man31 linkage orientation. Three low-energy linkage conforsng@g
b, anda’) lead to Backfold type, whereas the less favored conforrfeandc’) lead to

“Half Backfold” (17%) “Backfold” (59%)

PR

WA

(c) -
“Extend-a” (10%) “Extend-b” (13%) “Extend-a” (29%)

Figure 4. Representative conformers and populations adtdiom the clustering analysis.
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Extend type. The bisecting GIcNAc suppresses the confaomeltvariety, leaving only
Backfold and Extend-a forms as major conformers.

N-glycan modification is known to alter several functionatidty®. Change in the
binding affinity to the target protein is important. Early NMvbased-analyses of model
oligosaccharidés® and recent MD simulatidhsupport the idea that chemical modifica-
tions induce unique conformation suitable for the targetgin. Our results suggest that
chemical modifications may not induce any unique conforomaliut limit the conforma-
tional flexibility (select only suitable conformation) ftve target protein.

4 Concluding Remarks

We performed REMD simulation of a biantennary complex-tisglycan in solution. We

have fully characterized the dynamical conformation of fglycan and that with the
bisecting GIcNAc. We have shown that the bisecting GIcNAeglaot induce unique
conformation but limits the conformational flexibility. €lresults provide an insight into
the mechanism of “conformation selection” for the specifiwing to the target protein.
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We will present computational approaches to address threeodegenerative disorders:
Parkinson disease (PD), Huntington Disease (HD) and Pismade (or transmissible spongi-
form encephalopathies, TSEs). PD is characterized by atseelegeneration of specific sub-
sets dopamine neurons. The formation of cytoplasmic aggiegatked Lewy bodies, mainly
constituted byn-synuclein is an hallmark of the disease. HD is caused by aarslgd CAG
repeat in the huntingtin gene encoding for polyglutaminettia the huntingtin protein (Htt).
Neuronal intra-nuclear and intra-cytoplasmic inclusiaok in polyglutamine are pathological
hallmarks of the disease. TSEs are characterized by theroatfional change of a membrane
bound protein, the cellulaPr PC, into a disease associated, fibril-forming isofod; PS¢,

1 Introduction

An increasing family of neurodegenerative disorders i®eased with aggregation of

misfolded polypeptide chains, which are toxic to the celis kssential to understand why
and how endogenous proteins may adopt a non-native fold andddevelop new drugs

with improved efficacy.

PD. We have studied two different aspectsoeynuclein (AS), namely: (1) the structural
role of compensatory replacements in mice AS, where a poitation linked to human
familial PD is physiologically present in the wild-type smace; (2) the modulation of
AS aggregation by dopamine (DOP) analogs and metabolisaiupts. (1) Three point
mutations in the AS gene, A30P, E46K and A53T have been ifieshtin familial PD
case$. In non-Primate mammals, A is replaced by T, that is the fanihutation in
PD. In mice, 53T is accompanied by six other substitutior87(§ L100M, N103G,
A107Y, D121G and N122S). To explore the structural role ef¢tbmpensatory aminoacid
changes in mice, we performed a comparative sub-microseocosiecular dynamics
(MD) simulation study of wild-type human AS (huAS(wt)), AB3nutated human AS
(huAS(A53T)) and mouse AS (MAS(wt)). (2) AS has been showregulate dopamine
metabolism at multiple levels including its synthesis,aligtand release. AS fibrillization
and DOP metabolism are likely to be linked to PD pathogeheBI®P, as well as several
products derived from its oxidation, bind to the AS C-teratinegion comprising the
YEMPS residues (125-129). These molecules inhibit the emion of AS to mature
fibrils, promoting instead, accumulation of innocuous aligeric forms. We applied an
integrated computational and experimental approach todfitednative ligands that might
modulate the AS fibrillization.
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HD. The first exon of the huntingtin protein (Htt Exon 1) contathge polyglutamine
(polyQ) region. It is implicated in Huntington disedse We have investigated by
computational methods two relevant structural aspectstoEkbn 1. (1) The length of
the polyQ region in Exon 1 is inversely correlated to the agenset of symptonfs The
similarity between the Q side chain and the amino acids baeklattributes a crucial role
to the formation of intramolecular hydrogen bonds (HB) iny@aggregates We have
studied the effect of cooperativity on the polyQ expansmruhderstanding if HB content
plays a major role in the structural stability of polyQ syste (2) The first seventeen
amino acids of the N-term region (N17) modulate aggregatimhtoxicity of Htt Exon §.
Aggregation might arise by a variety of mechaniéniBe understanding of which greatly
benefits from structural information. However, neither skeeondary structure content nor
the tertiary structure for N17 is known. We describe thertt@tynamics and the kinetics
of N17 in aqueous solution at room temperature.

TSEs. TSEs arise with the post-translational conversion of thiguitous cellular form
of the prion protein,Pr P, into its pathogenic formPr PS¢, without any detectable
covalent modificatiorts A relationship between point mutations and TSEs has bemalyfir
establishetf. Indeed, in the presence of specific disease-linked musgtie Pr- P¢ to
Pr P3¢ conversion appears to occur spontaneddsihe mutations accelerate the kinetics
of the misfolding process relative to WT, possibly mostly dege of a destabilization of
the native structure and/or an increasing in the stabifithe partially folded intermediate
specie$ 2 Hence, we have investigated the intrinsic instability?efP¢ fold mutants as
key for TSEs research.

Stabilization Energy per HB
(Kcal/mol)

4 strands

m T 3 strands
2 strands

1 strand

Figure 1. Cooperative Effect of Poly(Btabilitation Energyper HB: the strength of the HBs between layers
increases nonlinearly with the number of strands, accorgirogir calculations.

168



>

Gibbs Free Energy

\
\
PrPC | Mutants

Native \‘
\

Amyloidogenic

PrP¢-Ligand Intermediate
Prpss

Conformational Spacer

Figure 2. PrPC to PrPS¢ conversion. Qualitative scheme illustrating the Gibbs free energy changhe
interconversion, as proposed by Prusiner é alhe interconversion is thought to entail intermediateiatyt
folded conformers. The mutation could destabil2ePC (hence increasing the population of intermediates),
whilst small ligands may stabilize ther P€ conformation.

2 Methods

PD. (1) To study the role of the compensatory aminoacid sultstits from human to
the mouse protein, we performed classical MD simulatiorts WAMD*3, which were
extracted from a NMR ensembBfe (2) The five selected ligands were docked onto the 6
AS conformers using AutoDoék

HD. We use classicHl andab-initio!” MD for studying polyQ properties. Bias Exchange
metadinamic® and modelef for N17 features.

TSEs. We apply molecular dynamics (MD) simulations using a praslg established MD
protocof®.
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3 Results

PD. (1) Our calculations on huAS(wt) and huAS(A53T) reprodutled experimental
structural informatioff. We then took advantage of the same computational protocol t
identify the structure and conformational fluctuations &®gwt). Structure and plasticity
changes in mAS(wt) protein restore structural featurestootdissimilar from those
of huAS(wt). Future experiments in vivo and in vitro shoullteess the role of S87N
substitution as an intramolecular suppressor of A53T toxi€2) Three of the screened
ligands (6-aminoindole, 5-hydroxyindole, 2-amino-4tdeutylphenol) were shown by
MD simulation to interact significantly with AS (and in patiar with the 125YEMPS129
region), although to a lesser extent than most dopaminealigés. In agreement with
these predictions, in vitro assays in combination with kigéolution microscopy revealed
the inhibitory effect of these ligands on AS aggregation.e Thnsistency between both
approaches highlights the importance of a combined inosdied in vitro approach that
could be used in predicting and developing new drugs anapleettic strategies for PD.

HD. We have further corroborated the hypothédisat the HB content plays a major
role in the structural stability of polyQ systems. Indeeck find that PolyQs tracts
always tried to establish the higher number of HBs betwedin &ide-chain and backbone
atoms, independently of thé-sheet content and the number of Qs in each stru&ure
Furthermore, quantum mechanical calculations point tdabethat, as expected, the HB
network of polyQg-sheets is associated with a cooperative effect (CE) ottzar that of
the amino acid®. The presence of such extra-stabilization may explain@alggregation
propensity. Next, we have investigated structure and bélb a cellular partner of Htt
Exon 1. First, we have predicted the conformational prapexf the peptide in solution.
The results are in accord with experiméfitsThe detailed structural characterization of
N17 alone may helps to investigate N17 interactions to isilee partners.

TSEs. MD calculations, carried out on all of the pathogenic mutait Pr“ globular
domain show that all the variants feature common traitgpedtidently from position and
chemical nature of the mutations. These include: (i) theugison of a specific salt bridge
network present in HUPrP(WT) in all the disease linked mstédtMs), with consequent
increase in flexibility ofxs in most of them. (ii) The loss or the weakening of hydrophobic
interactions present in HUPrP(WT) in all the DLMs. (iii) Arcirerased solvent exposure of
Y169 in 55 — as loop relative to HUPrP(WT) in most DLMs. From the biologicalmt of
view, the altered conformation observed in HuUPrP mutanthintause a different affin-
ity for cellular membranes and, consequently, an aberaatlization of PrP in cellular
compartments, favoring formation of altered endoplastaticulum topologie®. Inde-
pendent evidence derived from cell culture, expressingesofithe DLMs studied here,
showed that these mutations affect folding and maturatfoR:¢” in the secretory path-
way of neuronal celf®. The structure-function relationships suggested by thuigkwnay
contribute to understand the molecular basis of the genarat Pr PS¢ in inherited prion
diseases.
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We present an investigation of the determinants of binding@zolidinone antibiotics, in
particular linezolid, its derivative radezolid, and theusturally related oral anticoagulant drug
rivaroxaban in complex with the large ribosomal subunit fidaloarcula marismortuiusing
molecular dynamics simulations. Our results are in agreemetht aviailable experimental
data that show radezolid as the most potent inhibitor compardidezolid and rivaroxaban.
Furthermore, the structural and dynamical insights obtafiraed this study will provide ability
to design improved antibiotics in the future.

1 Introduction

The ribosome is a large ribonucleoprotein complex thatiesrmut protein synthesis in
all kingdoms of life. It is composed of a large and a small sutpwhich are denoted
as 50S and 30S in bacteria. Peptide synthesis can be irthiipjtentibiotics that bind
to three functionally different sites on the ribosomal stame, namely the decoding site,
the peptidyl-transferase center (PTC), and the proteirtemnel. High resolution crystal
structures of large and small ribosomal subunits in compligk antibioticg 3 have rev-
olutionized our understanding of their binding sites, ligdmodes, and mechanisms of
action. Such information provides opportunities for ratibstructure-based drug design
approaches to improve existing or obtain novel antibidtielpful in combating bacterial
resistanck However, structural determination by X-ray crystallqgra only provides
static views of the binding processes but does not revealyhamics involved with an-
tibiotics binding, or the energetic determinants of birgditheoretical and computational
approaches such as molecular dynamics (MD) simulationsritbination with free energy
calculation8 are suitable to fill this gap.

In the present study, we aim at investigating the deterntgnahbinding of the oxa-
zolidinone class; the only synthetic antibiotic class teehantered the market during the
last 40 year& Structures of linezolid, the first approved oxazolidinamibiotic, in com-
plex with the large ribosomal subunits frof marismortui(H50S¥ andD. radiodurans
(D50S} have been solved recently. Here, we investigate linezitdidlerivative radezolid,
and the structurally related oral anticoagulant drug axaban in complex with H50S by
means of MD simulations to obtain insights into the deteamis of binding of this antibi-
otic class (Fig. 1).
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Figure 1. The binding site of oxazolidinones inside the éariposomal subunit. (A) Crown view of H50S;
proteins are shown in blue and RNAs in light grey. (B) The cloamstructures of linezolid (top), radezolid
(middle), and rivaroxaban (bottom); the phenyl-oxazolidiea@ore is colored in red. (C) Enlarged view of the
linezolid binding site with key residues and respectiverbgen bonds formed (dotted lines) in H50S (top) and
D50S (bottom).

o)

2 Methods

The starting structures used for the MD simulations weraeeifrom the 2.7A resolution
X-ray structure of linezolid bound to H50S (PDB code 3CPW) structurally modifying
linezolid to radezolid and rivaroxaban, respectively. MID simulations (around 800,000
atoms each) were performed using the AMBER 10 suite of prograith the ff99SB force
field and the TIP3P water model. All three simulations redchéngth of 50 ns of which
snapshots saved at 20 ps intervals were used for analysis.

3 Results

As a first step we investigated the local interactions of tkazolidinone derivatives
formed within the binding site. This analysis showed that fttlydrogen bond between
the acetamide NH of radezolid and the phosphate group of G@380S numbering used
throughout) persists during the whole simulation, wherglaieaks in the case of linezolid
after 4 ns and only forms for a few nanoseconds in the casearfotaban (between 28
and 32 ns) (Fig. 2, (1)).

In a second step, the aromatic stacking interactions bettveenucleobase of U2539
and the oxazolidinone core (Fig. 2, (2)) as well as betweef8Zand the phenyl rings
of the oxazolidinone derivatives (Fig. 2, (3)) were invgated. The aromatic interactions
persist during the MD trajectories in both the radezolid melzolid complexes but break
after 30 ns in the case of the rivaroxaban complex. This fopdnin agreement with
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Figure 2. Time-course of non-covalent interactions: (1) tdgeén bond formation between the ligands’ ac-
etamide NH and the phosphate group of G2540 and of aromatiadatiens between (2) the oxazolidinone core
and the nucleobase of U2539 as well as (3) between the phiagydnd the nucleobase of C2487, respectively.
(4) Atomic fluctuations (RMSF) of the atoms of oxazolidinonesing the MD trajectories of H50S complex
structures with linezolid (black), radezolid (red), andaroxaban (green).

the observed ligand movement inside the binding site (Fig(4p: While the core of
rivaroxaban shows large fluctuations (RMSF3.0A), the core of linezolid and radezolid
are largely immobile (RMSk 1.5,&).

Finally, the fluctuations of the binding site residues darihe MD trajectories were
investigated. Again, a similar behavior was observed irctse of the linezolid and rade-
zolid simulations, where both binding sites undergo magemzovements (RMSK1 ,5\).

In contrast, the binding site of the rivaroxaban complexwsghanuch more pronounced
fluctuations (Fig. 3) that reflect the movement observedterligand. In that case, the
largest movement is observed for the nucleobase of U2620.
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Figure 3. Color-coded representation of atomic fluctuatiminsined from the MD trajectories for the binding
site residues of the H50S complex structures with linezdéét)( radezolid (middle), and rivaroxaban (right).
Red color indicates high and blue color low RMSF values.

175



4 Discussion

The present study underlines the importance of computtistndies to analyze antibi-
otics binding to the ribosome. While certain aspects of migdif linezolid to H50S can
be understood based on the available complex crystal stas;tinformation about the
binding determinants of radezolid and rivaroxaban to H58Sremained elusive so far.

To investigate the determinants of binding of antibiotictha ribosomal structures, we
have performed all-atom MD simulations of large ribosomadwits in explicit solvent.
The analysis of hydrogen bonds and aromatic interactiomidates a stronger binding
of radezolid over linezolid, which is in agreement with theerimental data. Surpris-
ingly, while the chlorothiophene moiety of rivaroxaban ¢enwell accommodated in the
H50S crystal structure, the MD simulations reveal a prowedmovement of this ligand,
which is accompanied by a loss of the initial hydrogen bogdind aromatic interactions.
This may be the reasons why no inhibition of protein synthegs detected so far for
rivaroxaban.

In contrast, the binding of linezolid and radezolid is mgisiabilized by the acetamide
moiety as it is involved in making hydrogen bonding intei@as with the RNA. In agree-
ment, all recent linezolid derivatives preserve this mpiethich shows that any change
in the group can be detrimental to the affinity. However, ttarpholino group does not
form apparent interactions and can be substituted withr@faips without leading to a
loss in inhibitory activity. This is supported by SAR stuslien linezolid and radezolid by
others. The triazole moiety for both linezolid and radezdtirms weak hydrogen bond
interactions with the nucleobase of U2620. This interacsitabilizes the conformation of
U2620, thus arresting it in a nonproductive conformatiorg thereby prevents the correct
positioning of the P-tRNA. In the case of rivaroxaban, U26B0ergoes large movements
during the MD simulation and forms no stable interaction.

By means of MD simulations, we were able to identify key stnual features required
for the strong binding of radezolid to H50S. Also, we wereeatd identify structural
reasons why rivaroxaban does not act as an antibiotic. Gilyreve are in the process
of investigating the contributions of the binding site dems to the relative binding free
energies of the three oxazolidninone derivatives. Toge#lith the structural information
gained so far, this information will be used to further ursdand antibiotics selectivity and
resistance. Furthermore, we expect our findings to provisss for designing improved
antibiotics.
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Hepatitis C virus (HCV) infections affect 3% of the world’sulation and are a serious global
health problem. Rapid drug resistance development of HCVnagalirect-acting antiviral
(DAA) agents is regarded as a major problem in medical treatnfémtrational drug design,
it is therefore an important challenge to gain a detailed tstdeding of the molecular mech-
anisms conferring resistance. We present computationakstoéinatural and drug-resistance
related viral variants of the HCV NS3/4A serine proteasecilig considered a most promising
drug target in DAA development. The structural basis of timelisig properties of the wild type
protease and the resistance behavior of the proteasetorhibsistance related viral variants
V55A/I and R155K/Q/T are analyzed on the basis of molecularadyics simulations. Our
studies indicate two main effects leading to a reduced stibdép of HCV protease inhibit-
ing compounds and provide an explanation of the experimees#&tance data on a molecular
basis.

1 Introduction

According to estimates of the world health organizationrldwide currently about 170
million people are infected with the hepatitis C virus (HEVMost patients develop
chronic infection and bear an increased risk of sufferingselife-threatening long-term
afflictionst. HCV drug and vaccine development is a most challenging baslause the
virus circulates as an ensemble of genetic variants, deecguasispecies that represent
a main obstacle for drug design The hepatitis C NS3/4A serine protease is regarded
as a highly promising target for direct-acting antiviralA®) agents. A new generation
of direct-acting linear ketoamide inhibitors shows enegimg results in recent clinical
trials?, but owing to the quasispecies population the virus is ablapidly develop drug
resistance under selective pressure, which is regardedjas pnoblem in future medicinal
treatment*. Thus, it is especially with regard to rational drug desifigr@at interest to
gain a detailed understanding of the resistance mechaniBpgeally, rather small struc-
tural changes are involved in resistance development. i$his particular true for viral
escape mechanisms as the virus must conserve its funétyoeatn in resistant mutants
and cannot undergo large conformational changes.

In the following, we present MD studies of the structuraluefice of V55 and R155
point mutations on the binding properties and resistanbavier of the HCV NS3/4A ser-
ine protease and the natural inhibitor-resistance reM&h/| and R155K/Q/T variants.
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2 Methods

The crystal structures with the PDB IDs 200@8vild type (WT) with covalently bound
inhibitor boceprevir) and 1A1R(apo WT structure) served as structural basis. The start-
ing structures for the variants were obtained by mutatimgsilde chains V55 and R155,
respectively, using the software tool IREC&nergy minimizations and MD simulations
were performed using the GROMA&®rogram package together with the GROMOS96
53a6 force field parameter 8etTopology parameters for the ligand were obtained from
the PRODRG servéf. To specify the covalent linkage between S139 and the itnibi

a deprotonated serine was defined based on the paramethesaufrtesponding standard
residue of the employed force field and suitable parameterbdnd length and angles
were added in the topology file to define the covalent bondhEgstem was neutralized
and embedded in a periodic cubic water box. The water maeauere described by the
simple point charge (SPC) explicit water model. For the @atibn of non-bonded inter-
actions a cutoff of 1.4 nm was used and electrostatic intierscwere calculated with the
particle-mesh Ewald (PME) method. Bond lengths were caimstd with the LINCS algo-
rithm. The Berendsen weak coupling method was applied tp taraperature and pressure
constant with a temperature coupling relaxation time offgsla pressure coupling con-
stant of 1.0 ps, and a compressibility4o§ - 10~°. The energy minimized structures were
stepwise heated from 0 to 300 K over 460 ps. During the hegtrapedure, a time step
of 1 fs was applied together with position restraints up teraggerature of 200 K. For the
subsequent equilibration over 20 ns at 300 K, a time step s&&d a constant pressure of
1 atm was used.

3 Results and Discussion

The binding pocket of the HCV NS3/4A serine proteases isattarized by a catalytic
triad comprising residues S139, H57, and D81. Linear ketdanmhibitors, mimicking
the natural substrate, bind covalently to the catalytjcaditive S139, while the first gen-
eration of HCV protease inhibitors, macrocyclic compouyrueds through non-bonded
interactions. The mutated residue V55 is not directly imedlin inhibitor binding, but is
situated adjacent to S139 screened from the binding sittdygatalytically active H57
and D81. In contrast, residue R155 is exposed to the bindiegsrface and forms a salt
bridge network with its neighboring residues D81, D168, Ri@3. Thus, different types
of resistance mechanisms can be expected upon mutationsofiMbR155.

In order to analyze the structural basis of the mutants’ @rfbe on the binding behav-
ior, we performed MD simulations for the WT and the V55A/I \aaris with and without
the inhibitor boceprevir to study the influence of the matatbn the binding site geometry
in the bound and empty state. Furthermore, simulations weméed out for R155K/Q/T
protease variants without inhibitor. For comparison, wditiohally performed calcula-
tions for the apo WT protease to rule out possible artifactddigting the inhibitor from
the bound complex structure.

3.1 V55 Variants

In comparison to the WT, the inhibitor-resistant variant ¥Wsfhows a constriction of the
binding pocket around the binding site S139 (see Fig. 1 (a)).
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Figure 1. Superposition of the binding sites of the apo WTcstme (grey) and the unbound variants (a) V55A
(pink), (b) R155K (cyan), and (c) R155T (orange). Protrgdnrface areas of the variants into the binding cavity
are highlighted.

This is found for both the bound and the unbound state andlécted in C, distances
between S139 and the nearby residues within the bindingegiien. Thus, the narrowed
binding pocket reduces the susceptibility as it hampersrthi®itor molecule to bind co-
valently to the protease. In contrast, similar conformadiaestrictions are not observed
for the V551 variant which correlates well with the experimed data.

3.2 R155 Variants

The analysis of the MD simulations of the R155K/Q/T variasiggests two different
structure-based effects that reduce the susceptibilitgt, il mutations affect the stability
of the electrostatic network within the binding site. Thenher of salt bridges is reduced
in the variants (R155K: # = 7, R155Q: # = 3, R155T: # € 8pmpared to the WT (apo
WT: # = 8). This decrease weakens interactions with macracymhibitors. Second,
mutations to lysine and threonine, respectively, causéotorational changes within the
binding pocket similar to the effects observed for the V5%#iant (see Fig. 1 (b) and (c)).
These sterical constrictions hamper ketoamide inhibtmesccess the binding site.

4 Conclusion

Our studies provide a deeper insight into the moleculastasce mechanisms of the HCV
NS3/4A serine protease and an explanation of experimgrablerved binding affinities
of the natural inhibitor-resistance related proteaseawisi V55A/1 and R155K/Q/T.
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The recently developed MARTINI coarse-grained model repced a wide range of lipid prop-
erties as well as lipid-protein interactions for rigid @iots. Protein folding and aggregation
however often involve significant transitions between seleoy structures and hence require
that the proteins be flexible during the simulations. We presecent advances in our exten-
sion of the MARTINI model to more accurately describe the imébflexibility of peptides by
introducing in the energy function a term that accountstierdinhedral potentials on the peptide
backbone. We assess the performance of the resulting modeldylating structural proper-
ties and comparing them with the outcome of atomistic simulatiofhe improved model is
also applied to investigate the self-assemblyafheet forming peptides. We characterize the
conformation of peptides and follow their self-aggregatiorwater and at the water-octane
interface.

1 Introduction

Many phenomena in biological systems such as protein fgldimd peptide aggregation
occur on long time scales. Coarse-grained (CG) models mpraseattractive alternative to
the traditional atomistic simulations since they offer guessibility of investigating com-
plex biological processes over larger length and longee tatales at a reduced level of
detail. In CG models, groups of atoms are represented asptadc lowering the to-
tal number of particles in the system. The reduced numberegfeks of freedom and
the use of smoother interaction potentials make the modepatationally very efficient.
Marrink and co-workers developed one such CG model for sitiar of lipids and sur-
factants, coined the MARTINI force field. The MARTINI force field was later extended
to proteins and it has been successfully applied in numerous studié®ipast few years.
However, there are certain limitations in the current impdatation of the MARTINI force
field. Changes in the secondary structure of protein are ooiehed, as backbone bonded
parameters are currently dependent on pre-defined segmstdastures. Therefore, biolog-
ical processes in which the folding and unfolding of secopd&uctures play an important
role cannot be easily studied with the current MARTINI fofiedd.

We report here the extension of the CG MARTINI model to imgrdlve treatment of
the backbone flexibility of peptides achieved by reparanmir dihedral angle potentials
and its application to amyloid and elastin-like peptidesiider to model the main events
during self-assembly.
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2 Systems and Methods

We used two sets of amyloid and elastin-like peptides: SNAIEG(GA)4, (GV)4,
GVGVAGVG, GVGVGGVG, GVAGVAGV, GVGVAGGY, GVGGVGGV (amylai),
GVGVPGVG, GVPGVPGV, GVAPGVGYV, GVGGVPGV (elastin).

2.1 Parameterization of the Dihedral Angle Potential

To develop dihedral angle potentials of the peptide backbICG representation, exten-
sive conformational sampling was performed by atomistitusation$ and various struc-
tural properties calculated from these atomistic trajgesowere used as reference for our
CG simulations. The bond and angle interactions were mddafehe harmonic energy
functions in the original MARTINI peptide force fieldThe dihedral angle was defined by
four consecutive backbone beads, and the dihedral angtédt®ns were calculated for
every quartet of residues possible for each peptide. Ubimgdnter of mass of the group of
atoms corresponding to CG beads, the distributions of thedial angles were calculated
for every peptide from atomistic trajectories. Then, ther@gponding potentials of each
dihedral angle were extracted from the normalized prohgldistributions by using the
Boltzmann inversion procedure. In the final step, potesti@rgies were fitted to a sum of
cosine and sine terms:

4

Va= Z[Ci cos(id) + S; sin(ig)] 1)

i=1

whereg is the dihedral angle and; andS; values are the force constants.

3 Results and Discussion

The performance of our model was assessed by comparing thbdrze beads (BB) con-
tact maps with their counterparts from atomistic simuladioln Fig. 1, we show the BB
contact maps of two selected peptides, GVAPGVGV and (Gdbtained from CG and
atomistic simulations. The contact maps show the proltgltiiiat a contact is present, as a
percentage of the total simulation time. For all cases, #ve model reproduced the most
populated contact of atomistic results: the A3-V6 contagieptide GVAPGVGV and the
G3-V6 contact in peptide (G\) Several other contacts with lower populations were also
reproduced with the new model. Our results indicate thaptirdéormance of the model
was significantly improved with the addition of new dihedvatentials.

Next, we examined whether the improved description of theklbane dihedrals is ad-
equate for studying aggregation processes without additiparameter adjustments. CG
simulations of 64 SNNFGAIL monomers were performed both atexw and in the pres-
ence of a hydrophobic octane phase. It has been reportethtmaimers of simplé-sheet
forming peptides in water and at the interface adopted m#fereht conformations and
interconverted over the course of the simulatfon$o analyze the conformation of the
peptides within the aggregates we calculated the distoibwf end-to-end distances,.
for aqueous and adsorbed peptide monomers at the inteffage2). Three conforma-
tion types were defined based dp.: short (S) ford.. < 0.65 nm, intermediate (1) for
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Figure 1. Backbone beads contact maps at 305 K. Each squalhe imdtrix ¢,j) corresponds to a contact
between the backbone beads of residwnd j.; GVAPGVGV (A); (GV)4 (B); Representative snapshots of
GVAPGVGYV showing the presence of significantly populatentaots. In the color scheme, each color represents
a range of probabilities of contact formation (C). On each ntlag atomistic map lies above the diagonal, and
the corresponding CG map, obtained from the simulations wthgr original MARTINI model (a) or the new
model with the addition of dihedral potentials (b), lies lvekhe diagonal.

| — original CG model )
—- new CG model

Figure 2. Distribution of end-to-end distance of 64 SNNFGAt water-octane interface using the original and
new CG models. Vertical lines dt. = 0.65 and 1.2 nm highlight the boundaries separating simbermediate
and extended conformations. Representative snapshots pkfitide in short and extended conformations are
shown.
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0.65< d.. > 1.2 nm and extended (E) fat.. > 1.2 nm. End-to-end distributions calcu-
lated from atomistic trajectori@showed that peptides at the interface preferred to adopt
an extended conformation compared to aqueous peptidésaiimg) that the adsorption of
peptides at the interface displaced the conformationalibgum of the peptides in favor
of stretched conformers. Comparison of the distributidng.g obtained from the original
MARTINI model and the new model reveals that both CG modelsrfaxtended struc-
tures. With the new model, however, the distribution of gt is shifted even further
towards extended conformations resembling fhstrands at the water-octane interface
during peptide aggregation. Based on these observatiahshase made from analysis
of atomistic trajectorie’s we conclude that the inclusion of torsional backbone fidixgb

in the new model provides a superior description of peptmtgfarmational preferences
during aggregation at the interface.

4 Concluding Remarks

The present work introduced a new approach for modeling ale&hmne flexibility of pro-
teins as extension of the CG MARTINI model. We applied thiprapch to amyloid and
elastin-like peptides. Peptide contact maps showed afisigni improvement when tor-
sional flexibility was allowed in the new model. In additi@ur new CG model was able to
reproduce the displacement in the conformational equilibrin favor of extended struc-
tures during aggregation at the interface without furtteameter adjustment, making the
improved MARTINI model suitable for biological processasalving peptide flexibility
over long time scales.
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The initiation of osteoarthritis has been linked to the ¢das& progression of pathologic mech-
anisms at the cartilage-bone interface, especially thengstiof NF-kB activation, which up-
regulates a number of pro and anti inflammatory genes. Morethisrdegenerative disease
involves cross-talk between the cartilage and subchohdra environments so an informative
model should contain the complete complex. We have developedtisecale model using the
open-source ontologies with cartilage and bone descniptad the cellular, micro and macro
levels to effectively model the influence of whole body loadirat the macro level on tissue
and cell level processes that determine bone and cartilagedelling. We evaluate the frame-
work by linking a common knee injury (ACL deficiency) to proinfimatory mediators as a
possible pathway to initiate osteoarthritis. This framedwprovides a virtual bone-cartilage
tool for evaluating hypotheses, treatment effects and siseaset to inform and strengthen
clinical studies.

1 Introduction

Osteoarthritis (OA) is a debilitating disease that cauddespread physical morbidity and
impaired quality of life . Traditionally, OA has been regaddas the wear and tear of
cartilage. However, recent evidence suggests that; (i) ot just a disrupted cartilage
mechanism but a breakdown of the whole cartilage-bone ammpence, bone and carti-
lage should be treated together due to their intrinsic irg&ationship; and (ii) OA exists
in the highly metabolic and inflammatory environments ofpade tissue, which control
joint degradation or local inflammatory processes by segetarious proinflammatory
cytokines. Traditional biomechanical studies have focused on maaa factors mainly,
such as cartilage thinning or material property change.duestion of whether degenera-
tion in cartilage is initiated by changes in articular dage or the underlying subchondral
bone is difficult to answer when one considers them in ismatiTherefore, our mod-
elling approach aims to have a holistic view of bone-cagélahysiology with information
viewed collectively rather than in a fragmented approachis Btudy employs a multi-
scale framework developed as part of the Physiome Pfojetn order to integrate these
modelling scales an efficient set of numerical tools is nemgsto link, store models and
employ different methodologies at different scales. Heedllustrate this structure for an
important musculoskeletal problem, OA induced at the leaygi-bone interface.

The aim of this study is to present a comprehensive mulgsfinlte element (FE)
framework of the cartilage bone junction in order to analttee initiation of OA. This
is accomplished by numerically linking information acragsatial scales from a whole
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continuum knee model down to a model of cell mechanics desdrusing ordinary dif-
ferential equations. To initiate this process we adopt &kedwn condition, anterior cru-
ciate ligament deficiency (ACLD) that leads to abnormal naedtal loading at the knee
as a possible precursorWe hypothesize that when abnormal loading is applied, sisch
with ACLD gait, bone remodelling will modify micro architeae and ultimately influence
peak cartilage strains. These strains will then inducenfleonmatory cytokines to degrade
cartilage quality at the whole organ level.

2 Methods

An anatomically-based knee model developed to investigateloading in gait was the
starting point. This model consisted of the femur, tibia, ligaments, meiresd carti-
lage and the joint forces and torques were estimated usuegse dynamics. The geome-
tries were developed using high-order cubic Hermite eldméditted to the Visible Human
dataset and customized to a subject using free-form defmmenethod8. The model
assembly is detailed in AnatMl_which describes the anatomical linkages for the whole
human body and acts as a store for the anatomical geometdesodel the loads expe-
rienced by the knee we simulated gait, the most common huaskn fTwo key loading
points of the gait cycle were identified, heel-strike andtralateral toe-off to load the
cartilage. Within the cartilage we embedded micro modelthefcartilage bone inter-
face representing 1 mm cubes to capture the micro defornstidhese were placed at
key locations across the cartilage surface to capture thaspariation of deformation.
The linking between the macro and micro models was intednatthin our finite element
software CMISSWww.cmiss.org ). This package is open-source and facilitates the nu-
merical linkages between the modelling scales. To sim@atendition known to induce
cartilage degeneration we then simulated an anteriorateiigament deficiency (ACLD).
The ACL was removed predicting increased anterior moverogthie tibia. At the micro-
scale a detailed micro FE model was developed, which coetbia$ cartilage, a zone of
calcified cartilage (ZCC) and subchondral bone, all treasedeformable adapted from the
imaging study by Zizak et dl. During each gait cycle the strain boundary conditions were
passed to an embedded micro model of the cartilage boné&icgerThis micro model com-
puted the local strain field, which was homogenized and passek to the macro cartilage
model in a two way feedback loop. The micro model was infortmgtvo cell models. A
bone remodelling algorithfrbased on the RANK-RANKL-OPG pathway, which predicts
the number of active osteoblasts (to deposit bone) and dasds (to absorb bone) coded
in CellML®. A cartilage damage prediction model was developed basetieomork of
Nam et al*®, which gives a quantitative description of the action ofleacfactor-kappa B
(NF-B) signaling cascade under mechanical stimulatiormkRartilage strains were used
as excitation of the protein complex IB kinase (IKK) whichiaates the NF-B pathway,
leading to induction of a number of proinflammatory genes.

3 Results

The previously validated whole knee matlalas consistent with cartilage deformations
previously reported [24]. Fig. 1 illustrates a slice of tH2 ®icro FE model and an illus-
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Figure 1. (a) Electron microscope image showing cartilagee i calcified cartilage and subchondral bone; (b)
2D slice of undeformed FE mesh and (c) compressed FE mesh with [b@@iing; (d) healthy von Mises strain
and bone architecture; (d) ACLD von Mises strain and remededichitecture after 3 months of bone evolution.
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Figure 2. Inflammatory response measured in terms of the expndesiel of nitric oxide synthase (NOS2) for
(a) ACLD and (b) normal loadings.

trative micro cartilage deformation of 100 m. It is clearttttee subchondral bone archi-
tecture creates regions of strain shielding leading to éialyavarying strain excitation
signal. This produced an increase in the peak strains obd@mthe cartilage, which when
coupled to the cartilage cell model increased the prodnafanflammatory cytokines as
shown in Fig. 2, which shows the pattern of proinflammatoityaition across the cartilage
in the remodelled knee for the ACLD loading (Fig. 2a) and rarfoading (Fig. 2b). In
the anterior cartilage, primarily in the medial compartiéme model predicted an inflam-
matory response highlighting sites of likely degenerati@hat is most interesting from
our model prediction is that even after a return to normatlitog (Fig. 2b) inflammation
continued. This indicates that once the pathologic statgtiated, the degenerative cycle
may not be reversible.

4 Discussion

We have presented a numerical framework showing the lirkkdggween AnatML,
FieldML and CellML. This has been used to evaluate a possitdehanism for the ini-
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tiation of OA by considering the coupling of bone and cagtila This was established by
considering the excitation for bone remodelling being eflced by the complex subchon-
dral bone architecture to induce a spatially varying reniodepattern in the cartilage
bone tidemark. This, in turn, leads to changes in peak agdiltrains that can induce
proinflammatory responses. This is consistent with preshoreported work that showed
altered mechanical loads can lead to loading in more filedland thinner regions of car-
tilage, which may initiate cartilage breakdotvnThe presented modelling framework is
a web-based open-source repository of models, which @onitng scientists can easily
use and disseminate their findings. The findings in this stady explain why altered
or traumatic subchondral bone loadings can initiate a degdine cycle in the cartilage
matrix. In conclusion, we have demonstrated the first atteahfinking three scales to-
gether to explain a possible mechanism for the initiatio®af The use of the Physiome
Project infrastructure has made linking the scales moreief, and the markup languages
(AnatML, FieldML and CellML) provide a structure for easy d® storage and dissemi-
nation.
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Potentials of mean force for deformation of virtuat € - C%-bonds were determined as func-
tions of virtual-bond length to extend the application of eoarse-grain UNRES force field
to handle the cis-trans transition of peptide groups. Therg@ls were calculated through
Boltzmann summation over the energy surfaces of N-methylacetamd N-acetylpyrrolidyne,
which served as model compounds. The respective energy ssifeere calculated on the
Ce ... C virtual-bond length¢) and and the improper dihedral angle H-N-CC (o) grid

at the Mgller-Plesset (MP2) initio level of theory with the 6-31G(d,p) basis set. The energy
was minimized with respect to the remaining degrees of freeddra.ffee-energy differences
between the cis and the trans form and the free-energy kmatoieis-trans transition calculated
from the PMFs conform well with the experimental data. Testudations were carried out
which denotes a- 107- times speed up due to the reduction of the number of the degfees
freedom.

1 Introduction

All-atom ab initio MD simulations with explicit treatment of water are stilstdcted to
small proteins and, therefore, simulations of larger pnsteequire a corse-grained ap-
proach. Such an approach is used in the UNRES (UNited REBfduee field, where
the representation of each amino-acid residue is redudsebtmteracting sites: a peptide
group and a side-chain group. The representation of potigeephains is simplified and
the number of degrees of freedom is reduced, resulting iadipg up simulations by 3 or-
ders of magnitude with respect to all-atom simulations.dntast to many coarse-grained
force fields, UNRES is based upon physical principles andtadistical analysis of protein
data basés

Cis-trans isomerization often is the rate-determining steprotein folding. One ex-
ample is Ribonuclease?An which cis-trans isomerization of three proline resid(Ris’?,
Prot'4, Prd''7) determines the folding rate. Moreover, the cis configoratf a peptide
group often has major effect on the structure of a proteirerdtore, the aim of this work
was to extend the applicability of the UNRES force field to mlocis-trans isomeriza-
tion of peptide groups. This aim was achieved by calculatiegpotentials of mean force
(PMF) of virtual C*- - - C* bond as functions of virtual bond lengtt){ fitting them to an-
alytical expressions to this potentials, and implementireggresulting analytical function
in UNRES.
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2 Methods

N-methylacetmide and N-acetylpyrrolidyne were used asetsoaf a regular and proline-
type peptide groups, respectively. To determine the reéisgeEMF's, potential-energy
surfaces of these systems were calculated by using the MP21Gl,p)ab initio method.
The energy was evaluated on the two-dimensional grid, wbhaeecoordinate was the
C>...C virtual bond length {) ranging from 2A to 5 A with a step 0.01A and the
improper H-N-C-C’ angled), ranging from -90to 9C with a 10 step. We also tried to
use the C-N-C(0)-C* dihedral angle«) as a reaction coordinate; however it does not
cover small and large€ - - C* virtual-bond lengths values. The PMFs were calculated by
direct Boltzmann summation; they were computed without (B gr with (Eq. 2) including
the entropy contribution estimated by using a harmonic@gpration.

F(d.T) =~ In'Y expl—fe*(d. )] &)

F(d,T)=—-p""! lnz [det H*(d, a)]fé x exp|—pfe*(d, )] 2

where F'(d, T') denotes potentials of mean forces;= 1/RT whereR is universal gas
constant and” is the absolute temperatuke, (d, ) is the energy at thei( «) grid point,
the superscript "™*” denotes value optimized in all degreé$reedom exceptl and «,
H*(d, ) is the Hessian matrix at thd,(«) grid point.

The PMFs were fitted to an analytical expression given by Eq. 3

U(d,T) = —p7t ln{exp {—B(%kcis(d — d‘;is)2 + Voeis + Seis(T — T°)>}
(3)
+ €xXp |:6 <ékt7’ans(d - dgmns)2 + VOtrans + Strans (T - T0)>:| }

whereU(d, T') is potential of virtual C---C* bond deformation in UNRES force field
keis (kirans) 1S force constant for the cis (trans) fori.;s, (Vorrans) 1S the reference free
energy of the cis (trans) peptide borts}, s (S;-ans) is first derivative of the free energy
of unstrained cis (trans) peptide bond in temperatiife= 298° K, d,,(d},4,,) is the
equilibrium value of virtual C- - - C* bond length for the cis (trans) configuration.

This expression behaves as a harmonic potential in the Ine@ighood of the cis- or
trans-configuration, respectively and includes the depeoel of the effective potential on
temperature. Marquardt’s methbdias used as the fitting procedure. The PMFs were
calculated and fitted on a grid from T = 24 to T = 350 K with 5° K step size.

After implementation of Eq. 3 in the UNRES force field, foutssef 512 independent
Langevin dynamics simulations were run for the Gly-Gly ang-Bro dipeptides. The
simulation temperatures were set at 380320 K, 34C K and 360 K, respectively. Each
trajectory consisted of 0steps with 4.89 fs time-step length. To speed up simulations
the friction of water was set to 16 normal value. All simulations were started from the
trans conformationdca...ca = 3.8 ,&). For each series of simulations the fraction of cis
conformation averaged over all 512 trajectories was catedlas a function of time and a
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first-order kinetic equation was fitted (Eg. 4) to the simoladata.
_
ki +k_y

wherez.;, denotes molar fraction of the cis conformation dndand k_; are forward
and backward reaction rate constants. The obtained reaetie constants were compared
with those computed from Kramers’ theory of reaction rate. (&

{1 —exp[—(k1 + k_1)t]} (4)

Teis =

Nwater Mred

do )
he S fahix {,/—mmd / exp[ﬁU(d)]dq} ®)
dy

where(2 is frequency of oscillator in the cis or the trans form respety, 1,4 IS the
viscosity of water;r is the radius of moving sphene,..; is the reduced masgis the
reaction coordinatel; = d;,qns andds = d.;, for the forward reaction and, = d.;; and
do = dyrans for the backward reaction, respectively.

3 Results and Discussion

The calculated PMFs are shown in Fig. 1 for N-methylacetamitd N-acetylpyrrolidyne,
respectively. The difference between the PMF values ofighard trans form is 2 kcal/mol
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Figure 1. Potentials of mean force without (red) and with ég)eentropic contribution for N-methylacetamide
(left) and N-acetylpyrrolidine (right) calculated from teatial-energy surface by using different schemes at

T=298K.

for N-methylacetamide and 0 kcal/mol for N-acetylpyrratigl, respectively, whereas the
free energy barrier to the trans-cis transition equals tkci’mol and 13 kcal/mol, respec-
tively. After including the entropic contributions calet¢d from a harmonic approxima-
tion, the difference between the PMF at the minima becomeslrkol and 0.3 kcal/mol

for N-methylacetamide and N-acetylpyrrolidine, respeatti, while the free-energy barrier
equals 10 kcal/mol and 13 kcal/mol, respectively. Lowenhfyee energy barrier is caused
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by high entropy of the transition state for N-methylacet@eniThe value of the free-energy
barrier to cis-trans transition obtained for N-methylaoaide is in good agreement with
the experimental values of this barrier determined foryaigle, which range from 11 to
13 kcal/mo?. Consequently, the PMFs calculated from tiien() energy surfaces with in-
cluding the harmonic contribution to entropy were used tivédehe potentials for UNRES
(Eq. 3).

10-5 T T T T T T

T i .
i .

log k

7.5 1 1 1 1 1 1
0.0028  0.0029  0.003  0.0031  0.0032  0.0033

1/Temperature [1/K]

Figure 2. Arrhenius plots of the rate constants of forward backward reaction of peptide-bond cis-trans iso-
merization for the Gly-Gly (red: forward reaction, greenckaard reaction) and Gly-Pro systems (blue: forward
reaction, grey: backward reaction). Crosses: simulatiaitdd lines: Arrhenius fit to values obtained from sim-
ulations. Solid lines: values calculated from Kramers’ eiua

As shown, the transition from the trans to the cis form isdiag&ir the proline type pep-
tide bond; however, the equilibrium is attained faster far tegular peptide bond (Fig. 2).
The trans form dominates for the regular and the cis form dates for the proline type
peptide bond (Fig. 2). The rate constants determined fronulsitions are in good cor-
relation with those calculated from Kramers’ kinetic mode€ig. 2); however they are
about 2.5 times greater. The forward (from trans to cis) catestants are about 18!
greater at T=300K, compared to experimental values of the order of 16 ¢Ref. 5).
The discrepancy between the UNRES-calculated and expetainete constants results
from the reduction of the number of the degrees of freedomNiRES. Based on the re-
sults of UNRES Langevin dynamics simulations and Kramegsiation analysis, it can
be concluded that the reduction of polypeptide chain repadion results in a 7 order of
magnitude greater rate of cis-trans transition of the pledtionds compared to experiment,
which makes coarse-grained simulations of protein foldingluding systems where the
cis-trans isomerization is a crucial step, viable.
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The pentapeptides WLXLL, where X is any of the 20 amino acidspeulat the POPC/water

interface. Wimley et al. used these peptides to measure tkiégrang preferences of amino

acids’ side chains. Due to their small size and the avaitgtilfi experimental partitioning free

energies, these peptides serve as suitable models for sgupgptide adsorption at interfaces
using computational methods.

In this study, Wimley-White peptides were simulated at the P@REr and the cyclohex-
ane/water interfaces using molecular dynamic simulationg frtitioning free energies for
amino acids were computed using free energy perturbation mietowd are compared with the
experimental data. A good agreement was found between the ¢tedhand the experimental
free energies, with exception of proline and phenylalanifie also investigate the transferabil-
ity of dihedral potentials that are derived from the atornisimulations, to be used in coarse
grained simulations.

1 Introduction

Due to rapid progress in computer hardware, our ability toutate systems containing
biomolecules, in atomistic detail, has expanded tremesigotiowever, sampling all rel-
evant degrees of freedom in a typical system containing reatsdof thousands of atoms
remains a challenging task. Biological processes thatrametimescales of milliseconds
to seconds are still out of the scope of atomistic simula&tion

One approach to increase the reach of simulations towanggidime scales is to sim-
plify the description of the system. Several atoms can bmpkd together and represented
by a single interaction site, capturing the net effectiteractions of the underlying group
of atoms, without the loss of significant structural detailse MARTINI model, developed
by Marrink and co-workers, represents such an approathis model was successfully
applied to study biological processes such as vesicleritaio domain formation in vesi-
cles. Originally developed to represent lipids, the MARTHbdel was further extended
to represent amino acitisThe bead mappings for amino acids were chosen to reproduce
the cyclohexane/water partitioning free energies of anaitid analogues.

In this study, we compare the partitioning preferences ohlay-White peptides at the
cyclohexane/water interface and the POPC/water intetfaitey the MARTINI force field
and highlight key areas where further development in MARTHdel is needed for more
accurate representation of lipid/protein interactions.

2 Methods

All the simulations were performed with the GROMACS (versi.0 and above) soft-
ware’. Peptides of sequence WLXLL, with X as any of the 20 amino acidse simu-
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lated at the cyclohexane/water interface, the POPC/watienface and in bulk water, using
MARTINI v2.12 for protein and v2.bfor lipid parameters. For alchemical simulations, the
free energies were computed using both FEP and Tl. The MBARadémplemented in
the pyMBAR program was used to estimate free energies and uncerssimtine FEP data.
The detailed simulation setup is described elsewhere

3 Results and Discussions

3.1 Side Chain Distributions

The equilibrium probability densities of the side-chaint€tee cyclohexane/water and the
POPC/water interface are shown in Fig. 1. The position ofside-chains at the cyclo-
hexane/water interface follows their hydrophobicity. Tiyelrophobic side-chains such as
L, V, and | partition deeper towards the cyclohexane, andothlar or the charged side-
chains preferentially orient toward the bulk water. Theesithain distributions at both
interfaces are quite similar despite the fact that the P@Btef interface is more com-
plex and chemically diverse. On the other hand, partial itlepsofiles of water at the
cyclohexane/water and at the POPC/water interface diffgificantly. The partial den-
sity decreases rapidly from its bulk value in the case of yadohexane/water interface,
whereas at the POPC/water interface, the decrease is ¢jeadbiaon-linear, resulting in a
broader interface.

/

!

11111

!
o o o
IS ®
D

T0tg—

[}
ensity (g cm™

Figure 1. Side-chain COM distributions £and X,) and partial densities of water (\Wand W) at the cyclo-
hexane/water and the POPC/water interface. The side-dititbutions are filled. For comparisons, thexis
was adjusted such that the maximum in the probability dengifamine is at 0 at both the cyclohexane/water
and POPC/water interface.

3.2 Partitioning Free Energies

Fig. 2 compares the partitioning free energies calculas&ubuhe free energy perturbation
method for both the cyclohexane/water and POPC/waterfaatewith that of the exper-

198



25

N AA

200 g AA
Il AA
15/

]

prrelvarets

Free Energy (kJ/mol)

-

EDKROQPNHTSVGMCILY FW
Amino Acids

Figure 2. Computed partitioning free energies of side-chaiat the POPC/water interface
(AAGeq1c(POPC/W)) and at the cyclohexane/water interfacAAGcqic(Chex/W)) as compared
to the Wimley-White scaleAAGyw)-

imental Wimley-White scale. For side-chains with a net chagpH 7 (D, E, K and R),
the free energies were calculated using the polarizablerwabdel of MARTINI. The
calculated free energy values at the POPC/water interfizcin @ood agreement with the
experimental data, with the exception of P and F. Also, wWithéxception of V and F, the
partitioning free energies are more positive at the cyotahe/water interface as compared
to that of the POPC/water interface.

3.3 Transferability of Dihedral Potential

The current MARTINI model cannot represent the changesarséitondary structure that
could occur during the simulations. Even though the protain be modeled as a helix,
coil, turn or bend, once chosen, the secondary structurainsrfixed during the course of
the simulations. To allow conformational transitions, @pgroach is to derive the coarse
grained dihedral potentials from atomistic simulationgwéver, such dihedral potentials
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Figure 3. Probability densities of the backbone dihedral@between last four £ of the peptide WLELL, in
bulk water (Right panel) and at cyclohexane/water interfdeft Panel), obtained from both atomistic (4B
and l47) and coarse grained simulations ¢B and ko).
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are non-transferable; not only they are specific for thergseguence, they are also spe-
cific to the system in which they were obtained. In Fig. 37Band 47 are the probability
densities of a dihedral obtained from the atomistic simaifest in bulk water and at the
cyclohexane water interface, respectively. Using Boltzmiversion, the By was con-
verted to a dihedral potential, for use in the coarse grasieullations. B¢ and g
are the corresponding probability densities obtained frloencoarse grained simulations.
There is a good agreement between coarse grained and atosinstilations in bulk wa-
ter, but the coarse grained simulations failed to reprodygeat the cyclohexane/water
interface.

4 Conclusions

The MARTINI model for simulations of proteins or peptidessitasted by comparing the
side-chain patrtitioning free energies to the Wimley-Whitals. The POPC/water parti-
tioning free energies for amino acid P and F are too hydrojchard will be modified in
future versions of MARTINI.

The dihedral potentials derived from the atomistic sirmialz in bulk water and in turn
used in coarse grained simulations failed to reproducettiraistic behavior at cyclohex-
ane/water interface. This indicates that such potentiasat only specific to amino acid
seguence but also to the environment in which the peptidesinadated.
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We present Molecular Dynamics simulations of a single strdrialdA i-motif in explicit sol-
vent. Our results indicate that the native structure in aciglic solution at 300 K completely
vanishes on a time scale up to 10 ns. By a comparison of high tetaperand biasing potential
simulations two unfolding mechanisms can be identified wheeepathway is characterized
as entropically more favorable. The variations of the entrogn be explained by strong wa-
ter ordering effects for several structures along the pagisw Finally the lowest free energy
configurations belonging to distinct hairpin conformati@ms indicated in good agreement to
experimental results.

1 Introduction

The appearance of non Watson-Crick like structures in DNg\degen reported two decades
agd. Since this time a lot of effort has been spent to investitfadse conformations and
possible applications in detilA prominent representative is the i-motif which is formed
in cytosine (C) rich strands of DNA

The stabilizing mechanism for these at a first glance fragfilectures is realized by
a proton mediated cytosine binding between different disaor regions of the sequence
resulting in a stable C-CH pairing?. Due to an acidic environment, this is achieved by
hemi-protonated cytosines which mimick an ordinary C-Glbng as itis present in double
helix DNA. Hence it becomes clear that these structuresrayeoacurring at slightly acidic
to neutral conditions resulting in pH values from 4.8 to*2.0-motifs show a remarkable
stability and have been found as tetrameric and dimeric t®rmp although their existence
has also been proven for single stranded BNA

The application of this special configuration in modern &éabinology has experienced
an enormous growth over the last yearSince the i-motif becomes unstable at pH values
larger than 7, a systematic decrease and increase of piattressolution by changing the
pH value results in a reversible folding and unfolding metsia. It has been shown that
this process occurs on a timescale of secénds

Technological applications for this mechanism are givemimyecular nanomachines,
switchable nanocontainers, pH sensors to detect the pté wadide living cells, building
materials for logic gate devices and sensors for distifmogs single walled and multi-
walled carbon nanotube systemdRegarding these examples it becomes clear that a de-
tailed investigation of the unfolding pathway of the i-nfidgi of prior importance.

We present the results of Molecular Dynamics simulationgceming the unfolding
mechanism of a maximum unstable single stranded DNA i-nstitifcture without hemi-
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protonated cytosines. Our results indicate a fast initeday of the i-motif leading to
hairpin structures on a timescale up to 10 ns which domitegeibfolded regime in con-
trast to a fully extended strand. By distinct investigatadrthe unfolding pathways, two
main mechanisms can be identified which significantly diffietheir entropic properties.
We are able to separate the contributions of the solvenicitkpto determine the influence
on the unfolding pathways.

2 Methods

We have performed our Molecular Dynamics simulations ofittmetif in explicit TIP3P
solvent at 300 K by the GROMACS software packhgéth the ffAmber03 force fielel
The single DNA strand consists of 22 nucleic acid bases diyehe sequenc& —CCC —
[TAA — CCC)3 — T — 3’ whereT, A andC denote thymine, adenine and cytosine. The
cubic simulation box with periodic boundary conditions hatimension of5.41 x 5.41 x
5.41) nm filled with 5495 TIP3P water molecules. For a detailed investigation of the
unfolding mechanism we conducted five 300 K simulations egithh 10 ns duration to
calculate the average values.

The calculation of the free energy landscape has been pegtbby the metadynamics
method presented in Refs. 6, 7. The final free energy landschpave been refined by
histogram reweighting of 15 biased simulations of 10 ns 8tk0y the method introduced
in Ref. 7.

3 Results

Kinetic investigations concerning the decay of the hydrolgends indicate a vanishing of
the i-motif on a timescale of 10 ns until a stable hairpinatue occurd®.

To investigate the fully accessible phase space, we appkethetadynamics technique
in which a history dependent biasing potential is applieth®omolecule which helps to
overcome energetic barriers. A demonstration of the deereflocal interactions between
the nucleobases is given by the distance matrices and furtiteirring conformations at
later simulation times presented in Fig. 1. It is obvioud the i-motif (Panel a) repre-
sents a well-defined structure with many local interactieven for long distances along
the backbone. Two further structures (Panels b and c) difféteir nearest neighbor in-
teractions. The structure of (b) has been also derived ir8@eK unbiased simulation
run after 7 ns and the structure of (c) is a fully planar hairgtructure which indicates
cross-like interactions. Local interactions for all nudeses between C1-Al12 can be ob-
served in (b) whereas (c) indicates interactions betweerofiposite sides of the strand.
In addition it has to be mentioned that we also have observJalilysextended configura-
tion in our simulations (Panel d). This conformation is cterized by the neglect of the
cross-like structure shown in Panel (c). It can be concludationly local nearest neighbor
interactions along the backbone are present with shodntists between the nucleobases.

The unfolding pathways with the corresponding thermodyinarariables are shown
in Fig. 2. The free energy values have been calculated by adyieamics variafdtand the
corresponding two unfolding mechanisms have been studiealdombination of biased
and high temperature simulatidhgJnfolding pathway 1 is energetically more stable one
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Figure 1. Distance matrices for the 22 nucleobases of the iieft) and three other conformations. Panel a)
shows the initial i-motif. Panel b) and c) present the restdt $wo hairpin structures and Panel d) is related to a
fully extended strand.

b <
AF = -8 kcal/mol A =7.5 keal/mol \Q‘ 1

> o

\

<2 ’

F=-3kcal/mol  Conformation AU [kcal/mol] Ta S [kcal/mol] ANH

Pathway 1 v; A =7.5 kcal/mol
ra A =3 keal/mol b -59 =51 11
Ea
. ) 7 =6 kealimol c -2 -14 1
e AF = -7 kcal/mol ’("
\ o <N d -127 -124 20
f Sok
e -62 -57 31
a
A = 1.5 kcal/mol
Pathway 2 f -140 -139 25
. g =177 -176 37

9
\‘DZ:{’\\\.

AF = -1 kcal/mol §

A »
A =15 kealimol .}Z//,\i’/
f AF = -1 kcal/mol

Figure 2. Unfolding pathways of the DNA i-motif with the cosponding free energy valuésF, barriersA and
denoted conformations (left side), The thermodynamic dataerming the total energshU, the entropic energy
TAS and the number of hydrogen bonds: ;; relative to the i-motif are shown on the right side.

with the global minimum conformations b) and c). It is obwaihat the fully extended
strand is a local minimum compared to the hairpin structofds) amd c). Large ener-
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getic barriers prevent the molecule from full unfolding.tli®¥eay 2 is energetically less
favourable due to higher free energy minima. Furthermoiseabvious that the preferred
first unfolding pathway is highly entropically driven, duethe fact that a smaller decrease
of entropic contributions can be observed. The decreasetaff@c energy can be mainly
related due to a significant ordering of the water molecusas@an be seen by the massive
increase of hydrogen bonds for structures d)-g). This immaiaused by an opening of
the strands such that the water molecules are able to ihteitacche nucleobases directly.
In conclusion we have shown that the unfolding of a singlarsted i-motif is mainly

driven by entropic contributions from the solvent. The fifrak energy minima are given
by distinct hairpin structures in contrast to a fully exteddstrand. Circular dichroism
spectrapolarimetry results have been also indicated kimahtimerical data are in good
agreement to the experimental restilts
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The sarcoplasmic reticulum &4-ATPase transports two €& per ATP hydrolyzed from the
cytoplasm to the lumen against a large concentration gradi@uring transport, the pump al-
ters the affinity and accessibility for 4 by rearrangements of transmembrane helices. In this
study, all-atom molecular dynamics simulations were perforfoedvild type C&+-ATPase

in the C&*-bound form and the GIn mutants of Glu771 and Glu908. Both effititontribute
only one carboxyl oxygen to site | &, but only Glu771GIn completely looses the Ga
binding ability. The simulations show that: (i) For Glu77bGbut not Glu908GiIn, coordina-
tion of Ca&2* was critically disrupted. (i) Coordination broke at sitditst, although Glu771
and Glu908 only contribute to site 1. (iii) A water moleculeunal to site | C&* and hydrogen
bonded to Glu771 in wild type, drastically changed the cition of C&7 in the mutant. (iv)
Water molecules flooded the binding sites from the lumenal ¢ideThe side chain conforma-
tion of 1le775, located at the head of a hydrophobic clusearrihe lumenal surface, appears
critical for keeping out bulk water. Thus the simulationstiight the importance of the water
molecule bound to site | & and point to a strong relationship betweer?€eacoordination
and shielding of bulk water, providing insights into the maeism of gating of ion pathways in
cation pumps.

1 Introduction

Ca*-ATPase of skeletal muscle sarcoplasmic reticulum (SER&JAslan integral mem-
brane protein that transports two Cafrom the cytoplasm into the SR lumen per ATP
hydrolyzed against a large concentration gradient actessnembrane. Classical E1/E2
theory postulates that the EaATPase achieves this by changing the affinity and acces-
sibility of the transmembrane €a-binding site$. That is, the binding sites have high
affinity and face the cytoplasm in E1, and have low affinity &k the lumen of SR in
E2. The crystal structures of SERCAla in different statetingnt to the active transport
cycle have largely corroborated
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SERCAla consists of three cytoplasmic domains designated dactuator), N
(nucleotide-binding), P (phosphorylation), and 10 traesrbrane helices (M1-M10). Four
transmembrane helices (M4-M6, and M8) constitute the twbrezinding sites (I and I1)
of different characteristics, although €ais coordinated in both sites by 7 oxygen atoms.
In site I, all oxygen atoms come from the side chains of ressdon 3 helices (M5, M6,
and M8) and two water molecules. Asn768 and Glu771 (M5), 98ra@nd Asp800 (M6),
and Glu908 (M8), all contribute only one oxygen atom to si@af*. In contrast, site Il
is formed almost on the M4 helix, with contributions by 3 mahain carbonyls (Val304,
Ala305, and 1le307 on M4), as well as 4 side chain oxygen attwsfrom Glu309 (M4),
one each from Asp800 and Asn796 (M6). The binding geometsjtall is reminiscent
of the EF-hand. Asp800 on M6 is the only residue that cootdsbaoth C&". The two
sites are located side-by-side but the binding processiggesfile, with site | C&" being
the first C&* to bind. It has been demonstrated that the removal of onlyconedinating
oxygen atom from site | completely abolishes’€ainding, yet removal of even 3 oxygen
atoms from site Il leaves 50% bindihig

Here we focus on two glutamates in site I: Glu771 and Glu908thBrovide only
one carboxyl oxygen for coordination. The Glu908GIn mutattomewhat decreases the
affinity for Ca*, but Glu771GIn is much more deleteriSusVhy this difference arises
is the subject of this study. Simulations demonstrated &1a808 is likely protonated
even when it coordinates site | €, and therefore the small effect of the Glu908GIn
mutation is understandable. To explore why Glu771GIn is @etdrious, we apply all-
atom molecular dynamics (MD) simulations to the-El&* state. In this state, Ca-
ATPase could be regarded as a high-affinity Gainding protein. However, the ATPase
is special in that it needs entry and exit pathways for botf"Gand water, and, being a
pump, the access needs to be opened and closed, i.e. a gat&roleeds to be in place. It
might appear that the regulation of affinity and that of watsressibility are two different
matters. The simulations described here, however, demadaghat substitution of one
oxygen atom with nitrogen in the Glu771 carboxyl criticadligrupts both.

2 Simulation Methods

All-atom MD simulations of SR Caf -ATPase with two bound Ca, explicit solvent, and
phospholipids were carried out using MARBLE software pagka CHARMM27 force
field parameters for proteihsphospholipids, and ions, except forCawere used. TIP3P
model was used for water molecules. The starting strucforesild-type C&*-ATPase
bound with two C&" were taken from a crystal structure of the enzyme (PDB ID4)Lsu
Glu58 and GIlu908 were treated as protonéte@ihe starting structures for Glu771GIn
and Glu908GIn were made by substituting the Glu in the wjlokt structure with Gin
keeping the side chain conformation unchanged. Detailedguiures for setting up a full
simulation system including a €a-ATPase, 473 DOPC phospholipids, two boundCa
150 mM salt solution were described previodsly

3 Results and Discussion

In this study, we performed three 10-ns MD simulations farteaf the wild type (WT1,
WT2, and WT3), Glu771GIn (E771Q1, E771Q2, and E771Q3), an®@@GIn mutants
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(E908Q1, E908Q2, and E908Q3). The root mean square desafRMSD) of Gy atoms
relative to the crystal structure exceeded 4 in all the sitmhs. This was due to large
rigid body movements of the N and A domains, as the individisshains did not change
much (RMSD< 2.0 ). The transmembrane domain was particularly stable JRNf
around 1.0 for wild type anei1.5 for the mutants), suggesting that the bouné*Cans
tie the transmembrane helices together.

In three simulations for wild type, the configuration of th&#C-binding sites remained
stable with fluctuations between two major forms. In one eftiajor forms, C&" coordi-
nation was almost identical to that in the crystal structuigere one of the carboxyl oxy-
gen in Glu771 coordinated site | €aand the other formed a hydrogen bond with a water.
In the other stable structure, the Glu771 carboxyl made ervéde coordination, replacing
the Glu908 carboxyl, where instead formed a hydrogen botidtiwe other water molecule
coordinating site | Ca". The seven coordination of €a was, thus, maintained in both
forms. In the crystal structure, a few water molecules acatied outside of Glu309 and
in the simulations, they exchanged rapidly with other watetecules in the cytoplasm. A
clear water path was observed between the M1 and M2 helezading to the Glul309. On
the luminal side, a hydrophaobic cluster involving Val27 3)VMLeu302(M4), lle775(M5),
and Leu787 and Leu792(M6) blocked access of bulk water (FigNo water molecules
from outside the membrane penetrated into the binding. sites

MD_WT (E1+2Ca2+)

Figure 1. Structural changes in the®dabinding sites. Viewed along the membrane plane. Superimpmstte
atomic model of the crystal structure in RC&* (pink) are: (A) WT1 at 10 ns (atom color); (B) E771Q3 at 10
ns (atom color); (C) crystal structure in E2 (green). The M8, and M8 helices are represented with cylinders,
and M4 and M5 with sticks. The arrows in B and C indicate the muts of the M4 helix relative to the rest of
the transmembrane helices. Dashed circles locate the |léd&Sisain.

Coordination of C&" in the simulations for Glu908GIn was less stable than that
for wild type, whereas, in all three simulations for Glu77aGCa&+ coordination was
severely altered. These results are consistent with moésgge data. In the simulations
for Glu771GIn, water molecules were introduced to the lrigdiite from the luminal side,
surpassing the hydrophobic cluster. Fig. 1 shows that irstfmeilations for Glu771GIn,
the lle775 side chain can rotate and relax the hydrophobigtet involving Val271(M3),
Leu302(M4), Leu787(M6), Leu792(M6), and lle775(M5). Sirite775 is located just one
turn below Glu771 on M5, the mutation effect is transferi@thie packing of hydrophobic
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residues, resulting in large conformational movementsuitipie transmembrane helices
(Fig. 1). Thus, the simulations show that one of the reasdnstive Glu771GIn mutation
is deleterious is that it allows introduction of bulk watetd the binding sites.
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The development of drugs regulating complement system activa of profound medical
interest. Compstatin, a 13-residue peptide, binds prot8imu@l inhibits complement activa-
tion in primate mammals, but is inactive against non-primatesidubtedly, the inhibition of
non-primate C3 is vital to drug development, since it wouldwltesting disease models in
non-primates. Recently, our molecular dynamics (MD) simufetioave elucidated the species
specificity of Compstatin. In non-primate simulations, thet@iounderwent reproducible con-
formational changes, weakening specific interactions atidciag the complex stability. Sub-
sequently, we aimed at tackling the species specificity usinglirections. In the first direction,
we in silico designed a novel 'transgenic’ mouse C3 protein by incorpwgapecific human-
like mutations in mouse C3, and proved that the affinity for Caatps in the simulations
becomes 'human-like’. In the second direction, we condudtedlations of novel Compstatin
modified analogs in complex with human and rat/mouse C3. The diiondareveal candidate
dual-specificity and high potency human inhibitors, in linéhwecent experiments.

1 Introduction

Several pathological conditions or complement relatedaties, such as macular degener-
ation and rejection of xenotransplantation can be causadgnavated by excessive, inap-
propriate activation of the complement system which ctutsts the first line of defense
against foreign pathogens. Hence, controlling the comeigmactivation via therapeu-
tic drug-based modulation of the key components of the cempht system is of utmost
importance (reviewed in Ref. 1).

Compstatin, a 13-residue cyclic peptide, is a promisingipoand selective inhibitor
of the complement system. It binds directly to the key comm@et protein C3 and demon-
strates clinical potential in a series of experimental nagstems. The sequence of the
parental peptide is [CVVQDWGHHRC]T-NHand is maintained in a cyclic conformation
by a disulfide bridge among cysteins 2 and 12, denoted by braclSince its discovery,
multiple multidisciplinary biochemical, biophysical espmental and computational stud-
ies aimed at the optimization of compstatin binding affiridy C3 and on the elucidation
of the key structural-energetic features responsibletédnhibitory potency.
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2 Structure of Compstatin-C3c Complex

In 2007, B.J.C. Jansse&n al. revealed the X-ray crystal structure of the most active comp
statin analog Ac-Val4Trp/His9Ala (W4A9) comprising natuamino acids, in complex
with C3c (a major proteolytic fragment of C3) and showed thatexact binding site of
compstatin on C3 the macroglobulin (MG) domains 4 aAd Based on the structure of
the complex and the series of studies performed on compsEatl.C. Jansseet al. pro-
posed that compstatin sterically hinders the access ofubstmte C3 to the convertase
complexes, and consequently it blocks complement aaivatihd amplification.

3 Solution Structure of Compstatin investigated by MD Simuldions

Prior to the publication of the X-ray complex structure, wapboyed multi-ns all-
atom/explicit-water simulations of three compstatin agaks with variable activity to
investigate the conformational properties of the peptidesjueous solutiolt. We exam-
ined the native analogue, the more active mutant W4A9 andhtiwive mutant containing
one mutation GIn5Gly. The simulations showed that the 5 -gBnemt of free compstatin
analogs folds into a 5 - 8-turn and the rest of the peptide is mainly disordered, i@ Vifth
NMR studie$. Our results suggested that the critical for activity rasitVal3 is involved
in reduced hydrophobic contacts and hydrogen bondingaatiens in the most active ana-
log and predicted successfully the presence of increasedvinlecular Val3-C3 contacts
in the W4A9:C3 complex via a hydrophobic cluster involving3/and C3 residues, prior
to the publication of the experimental X-ray structure

According to the X-ray studies W4A9 binds to C3c in a differeabformation com-
pared to the solution conformation: the 588urn is replaced by a new 8 - 13tturn. This
result supports the hypothesis that mutations which statithe observed bound conforma-
tion may yield C3 inhibitors with higher activify In 2011, new simulations including the
CMAP correction showed that the similarity between the $ation conformations and the
bound conformation increases with activity, in line witte thbove hypothesis. Therefore,
the results validate this hypothesis

4 Elucidation of the Species Specificity of Compstatin

Compstatin is active against human C3 (including the C3wéis other primate species)
but fails to inhibit the activation of C3 from lower mammaldndoubtedly, the develop-
ment of effective compstatin inhibitors against non-ptien@s3 is of profound interest since
it can be used to test disease models in non-primate anineais\Wed in Ref. 1).

In 2010, we elucidated this species specificity of compsthyi MD simulations of
complexes between the most potent natural compstatin gaald human or rat C3
The results were compared against the experimental X-rajoomation of the human
complex, and showed that the human complex simulationsepred faithfully the crys-
tallographic structure. In addition, the human complexuations provided insights on
the relative contributions to stability of specific C3 andmstatin residues. Particularly,
residues llel and Cys2 form hydrogen bonds with the sidencbfiAsn390; the Val3
side-chain participates in a stable hydrophobic clustén Wiet346, Pro347, and Leu454;
the Trp4 main-chain makes a very stable hydrogen bond wiy345 CO and a some-
what less stable interaction with the sidechain of Arg4&6side chain packs against the
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Figure 1. Simulation structures of the compstatin binding f&t the human (A, B) and rat (C, D), respectively
at the end of MD runs. Important hydrogen bonds are shown itethpanels and non-polar contacts in the right
panels. The labels | - IV (in A, C) indicate the four proteirc®es with atoms at least withinA&. from the ligand.
Comepstatin is shown in red tubes and sticks. The green tuloestble sectors I-1V. The violet tubes in A, C show
the initial conformations of sectors | and Il. In B, D protegsidues are additionally represented by a cyan color
surface, and ligand residues Cys2, Val3, Trp4, Trp7 and Zgsd represented by a red color surface

Cys2-Cys12 disulfide-bridge on one side and makes nonpol#acts with Pro393 and
the C atom of Gly345 on the other side forming a weak hydrogerdtwith Thr391 CO;
the GIn5 side-chain makes two intermolecular hydrogen bavith main-chain groups of
Leud55 and Met457; the Trp7 side-chain intercalates betvgeetors 455 458 and 488
491, making a stable hydrogen bond with Met457 CO and noarmantacts with GIn5,
Metd57, Arg459, and Glu462; the main-chain NH groups of Adaél His10 form very sta-
ble hydrogen bonds with the Asp491 side chain; the His1Qhigia interacts with Asp491
and is near a hydrophobic nucleus formed by Leu454 and Lesé@2Fig. 1 A,B.

In the rat simulations, the protein underwent reproduciddaformational changes,
eliminating or weakening specific interactions and redyhre complex stabilityy The
displacement of the proximal to the ligand sector 388-33Bé&rat complex brought about
a loss or weakening of non-polar interactions and hydrdgerding between the protein
and the ligand, in line with the lack of compstatin activityaénst rat C3; see Fig. 1
C,D. In general, most protein-ligand interactions becoreaker and most intermolecular
hydrogen bonds have smaller average occupancies comjpatteel htuman complex. The
leading changes deal with C3 residues Asn390, Asp491 andbargSpecifically, Asn390
loses its hydrogen-bonding interaction with Cys2 due todisplacement of sector 388-
393, Asp491 loses a hydrogen-bonding interactions withils&0 mainchain and Arg456
loses polar interactions with Trp4 and non polar interatievith residue GIn5.
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5 Computational de novo Design and Recent Experimental Studies

Recently, A. lopez de Victorieet al. presented three novel compstatin analogs contain-
ing tryptophan mutations at positions 1 and of.13hese analogs were inspired by a
physicochemical-reasoning peptide design performed @agier work. The design iden-
tified tryptophan substitutions at positions 1 and 13 in jgegstby predicting C3c binding
affinities. The newly experimentally tested analogs presitthe distinct polar and nonpo-
lar surfaces of compstatin and showed altered-improveal loteraction capabilities with
C3. The results are currently under investigation using MDusations.

6 Tackling the Species Specificity of Compstatin

We aimed at tackling the speicies specificity towards twéediht directions. Firstly, we

in silico designed a novel transgenic mouse C3 protein by incorpgrapecific human-

like mutations in mouse C3, and proved that the affinity fompetatin in the simulations
becomes human-like. Secondly, we conducted simulatiom®wdl Compstatin modified

analogs in complex with human and rat/mouse C3. The sinoulatieveal candidate dual-
specificity and high potency human inhibitors, in line wigtent experimenis
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Formation of thes-hairpin is the first step along the 2GB1 protein folding pei. This
B-structure is one of the nuclei during this process and otmthe rate of the whole protein
folding. We present an attempt to improve the Replica Exchwecular Dynamics (REMD)
by utilising the output structures from the coarse-graiMedte Carlo dynamics as the input for
the all-atom REMD. This approach enables effective samplimjcan be helpful in elucidating
the mechanisms a#-hairpin folding. Thermodynamics and dynamics is analyzedsog on
the number of native contacts during simulations. The enenggdcape is analyzed by means
of the Histogram Method.

1 Introduction

CABS! is a mesoscopic CA-CB side-chain protein model which is usgutotein struc-
ture prediction and validated during Critical AssessmdriProtein Structure Prediction
(CASPY experiment. Our results indicate that outpdairpin structures can be very sim-
ilar to native structure but they have wrong arrangementettydrogen bonds. It can be
a problem in some applications eg. docking biologicallyvacsubstances. Formation of
the C-terminal3-hairpin is the first step of the 2GB1 peptide foldfrap it is important to
simulate this process. There were many attempts to electatmechanism gf-hairpin
formatior?=°. There are three main ways how thehairpin can fol§. The first one is the
“zipper mechanisn?. In this scenario the structures are formed and stabilized through
the hydrogen bond system. According to second mechanisrfirghestep of folding is
the hydrophobic collapse of four residues: Trp3, Tyr5, Phahd Val14:6. This “core”
stabilizes shape of the-hairpin from the very beginning facilitating formation bydro-
gen bonds. The third mechanism was proposed by Felts’etTaley postulated that the
Zipping of hydrogen bonds and hydrophobic collapse areithel&neous events.

2 Methods

We used Replica Exchange Molecular Dynamics method withrépéica exchange at-
tempted every 4ps. Simulations and most of the analysis lir@e conducted using GRO-
MACS packagé. Bioshelf-° and dadssg® programs were also employed. Time of the
simulation was 150ns per replica. Ten temperature repheas been distributed in the
range of 285K-325K using algorithm of Patricksson and dere$p. OPLSAA forcefield
and tip4p model for the water were used. The equations ofamatiere integrated using
a leap-frog algorithm with a time step of 2 fs. The non-bondksttrostatic interactions
were computed using particle-mesh Ewald method and van dafsihteractions using a
simple cut-off. Starting conformations to the all-atom Mihslations were selected from
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the 5-hairpin dynamics simulation by the CABS model. Beta-hairfABS dynamics
was performed without using any knowledge about the expariat structure (except the
weak bias towards the native secondary structure), sgafitom random conformations.
Resulted CABS trajectory exhibited multiple transitioretvileen near native conforma-
tions (RMSD around 1 Angstroms, from which the best ones hadfgstroms) and fully
unfolded (most of the fully unfolded conformers had their 8Maround 5 Angstroms).
From the CABS trajectory, we have randomly selected 10 camdtions, spanning the
most frequent resolutions with RMSD to the native from 5 fbAngstroms. The selected
conformations were subjected to the two-step rebuildimgg@dure, from C-alpha trace to
the backbone atoms by the BBQ methdand side chains rebuilding by the SCWRL
tool. The worst structures start REMD simulation at high penatures and the best ones
at low temperatures. Input structures were minimized withdteepest decent method and
equilibrated for 200ps at constant pressure (1013 hPa)esmnpdrature (285K-325K).

3 Results

Altough we use various structures at the beginning, we plite average probabilities of
the exchange almost equal for every replica (in range of 14%). One can also notice
good overlapping of the histograms of the potential enengydrious temperatures, which
can indicate that the exchange process was efficient.

4 Refinement of the Structures

For four replicas we have obtained the staBlgairpin structures with ca. 5 of 7 native
hydrogen bonds. For one additional replica the structuth ea. three native hydrogen
bonds have been obtained. The best conformations from théfRfiad CRMSD=0.74
with the six native hydrogen bonds while the best input comfition had 0.& CRMSD
with only three native hydrogen bonds. Generally, outputfaonations with stabilized
structures and native-like turn had CRMSD in the the range.@% to 2.5A and we can
regard them as the native-like.

5 Mechanism of Folding

We have computed radius of gyratiaRf) of hydrophobic core (Trp3, Tyr5, Phel2, Vall4)
which should stabilize thed structure$. This value for native-like conformations was
in range of 5.4 to 5.7A. All convergent pseudotrajectories had this value senftbe
beginning so we cannot check the stabilizing effect of the cblowever, there were also
conformations with a good value @, but without any3 structures and they were not
not very stable. It indicates that in our simulation foldimight not undergo according
to hydrophobic collapse. It is interesting that the propattgyn of hydrogen bonds ifi
structures forms starting from the hairpin ends or sometistarting from the middle of
the structure (Fig. 1).
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Figure 1. Plots with a secondary structure formed on everguef 3-hairpin for demuxed, continuous trajec-
tories A) pseudotrajectory nr 1 (input CRMSD=A)3B) pseudotrajectory nr 4 (input CRMSD=2}
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Figure 2. Thermodynamics data A) Plot of density of the stagsus T and energy of the system B) Heat
capacity versus temperature.

6 Thermodynamic Data

We have computed also some thermodynamic data by the Wdigistogram Analysis
Method (WHAM) technics. Transition temperature correspogdo the maximum of the
heat capacity (Fig. 2B) is equal to 298.4K and at this tenmtpegathe highest structural
mobility and variability was observed. We noticed also tBatinda-helices constitutes
12% of the population in this temperature, which agreeshiyugith the experiment and
other simulations. Fig. 2A shows the combined data illdstgethe 5-hairpin energy land-
scape and showing cooperative character of the transititnalusters of conformations:
native-like and unfolded.

7 Conclusions

We proposed and tested a method that rectifies the confannsagienerated by coarse-
grained Monte Carlo simulation. By REMD we obtained a setariformations which
have proper scheme of native bonds. We also showed that tiormaf the hydrogen
bonds controls the folding mechanism.
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The first step in exploring the energy landscape for a nevesysisually involves locating the
global potential energy minimum. This article focuses uporrbhspping global optimisation
(Monte Carlo plus minimisation), which has been successtifiployed to investigate a re-
markably wide range of systems. Examples are chosen to ilestesults for clusters, bulk
systems, and a coarse-grained model of helices construcraccfslloidal building blocks.

1 Introduction

Methods to explore and sample structure, dynamics and tidgmamics based upon ge-
ometry optimisation provide both a conceptual and a contimmial framework for treating
complex potential energy surfaéed Coarse-grained treatments of thermodynamics and
kinetics can be obtained from stationary points of the pwaeenergy functionV (X).
For example, the simplest harmonic superposition appfodesed only upon local min-
ima, provides an accurate and extremely efficient way toiokquilibrium thermody-
namic properties for low temperature problems involvingien ergodicity. For cases with
competing morphologies separated by large barriers caedpark g 7", the superposition
method can be orders of magnitude faster than parallel tengpe Similarly, calculat-
ing transition states and applying unimolecular rate théor minimum-to-minimum rate
constants can provide an approximate view of the overaéitids for ‘rare events’. Here
the discrete path sampling approach (DPS) provides a sgtiteapproach to construct-
ing kinetic transition networks, which are analysed usindaakovian assumptidi’. No
reaction coordinate is required in the DPS approach, justssignment of products and
reactants.

However, before undertaking detailed studies of dynamntsthermodynamics it is
probably a good idea to know what is at the bottom of the p@ksnhergy landscape,
i.e. the global potential energy minimum. This structur@ds only the global free en-
ergy minimum at low temperature, but, in combination witlated defective structures, is
also likely to be important in describing the solid phaseuarbthe melting temperatute
We have also noted that the convergence of parallel tengealtulations can usually be
accelerated by starting all the replicas from the globaéptal energy minimum. Other-
wise, we are asking the parallel tempering simulation tdgper global optimisation for
the lowest temperature replica before equilibration caadbgeved. Since dedicated global
optimisation algorithms are much faster than parallel terimg for this task, a significant
saving of computer time may be possible if the global minimardentified first. This
article will therefore focus on one particular global opsation technique, introduced by
Li and Scheragal®, which has proved successful in a remarkably wide range pli-ap
cations 1112 This Monte Carlo plus minimisation approach, or basingiog, will be
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illustrated for a few selected examples chosen from the @iaig Cluster Database
Some key references are provided in each case, rather thexhauostive review, to pro-
vide readers with a starting point for accessing the ratkgnsive global optimisation
literature.

2 Methodology

Coupling local minimisation to some sort of search procedaractually implicit in a
number of studies that reported improved global minima foméc cluster§*-8 This ap-
proach can be viewed as a hypersurface deformation teahnidiere the potential energy
for any configurationX, becomes the potential energy of the local minimum that bor c
sen minimisation procedure converges to. More formallycamwrite this transformation
as

V(X) = min{V(X)}, (1)

whereX is a3 N-dimensional vector for a molecule containingatoms.

We can now consider the transformation of configuration spauod the associated
search technique separately to define alternative bagipihg approaches that differ pri-
marily in how steps are taken between minimisations. In tigiral Monte Carlo plus
energy minimization procedure the coordinates were re@s#idse of the current mini-
mun? 1%, This approach has generally been found to work more eftigiéiman allowing
the coordinates to vary continuou¥ly?? although coordinate resetting violates detailed
balance, and must be retained if thermodynamic properteeseguired, as in the basin-
sampling procedufé. After proposing a step and minimising the new minimum regta
the old one as the current structure if it satisfies an acneptaondition. Again, various
possibilities for this condition have been considered, thedsimplest Metropolis test usu-
ally works well, i.e. the new minimum with potential ener@y,.., is accepted if it lies
below the potential energy of the starting poift,. If it lies above the starting point then
the step is accepted ikp[(Fola — Fnew)/kT] is greater than a random number drawn
from the interval [0,1]. The temperature associated withNfetropolis test then becomes
an important parameter of the procedure, along with the iz of the proposed steps.
Threshold acceptance and other non-Boltzmann samplirensehhave been found to give
acceptable performance in basin-hopping, and proceduaesnly accept downhill moves
have also proved usefdl However, if further parameters are introduced then thigrapt
values are likely to become system specific.

One reason why the minimisation step is crucial to the sisgElsasin-hopping is that
much larger steps can be taken in configuration space, diecenergy that is considered
is the value after minimisation. Hence atoms can pass tir@agh other, and transi-
tions between basins of attraction between different ménoan occur anywhere along
the boundaries between basins of attraction. Downbhilliberrare effectively removed
by this procedure, thus accelerating the search of contigarapace. However, these
observations on their own do not explain why basin-hoppineceeds for multi-funnel
landscape® corresponding to different morphologies separated by bihiers. In fact
there is another factor working in favour of the transforiomat because the occupation
probabilities of competing regions of configuration spaeertap over a temperature range
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where interconversion is still possibfe?®. Hence the problem of trapping in low, but

sub-optimal, minima is partly alleviated.

3 Examples
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TIP5P TIP4P
H- Point H- Remin
n | Structure| bonds| group Energy Structure| bonds energy
2 C&..«J 1 Cs —28.3878 494 1 —28.3878
)‘.....U-QD
3 ,i:* 3 C, —62.7276 3 —62.7276
)‘....cugj
4| vty | 2 S, | —118.9554 ‘tsi;;ga;;.f 4 | ~118.9554
5 5 C —159.5019 “%?;"x?«g 5 —159.5019
|
6 6 S | —197.9372| i 8 | —189.5730
7 10 C, —242.0671 10 —242.0671
8 12 Doy | —303.1984 12 —301.3378
9 13 C —349.5400 13 —349.5400
10 15 C, —399.0432 15 —397.3824
11 16 C —440.5860 17 —427.2306
12 18 C —494.9000 20 —475.4220




19 C —535.4792 21 —524.5022

21 C —591.6422 23 —579.0053

23 C —631.8994 25 —626.8068
24 Cs —685.2407 28 —656.2767
27 C —729.4807 29 —702.7235
28 C —780.3213 31 —759.3826
31 C —833.3290 31 —819.8277
32 C —881.3449 34 —863.1006

34 C —935.3950 37 —885.2192

Table 1: Comparison of likely global minima for TIP5P4{8)y clusters,N = 2-21, and TIP4P structurés
including the energies of the latter geometries when relak#dTIP5P. All energies are ikJ mol ~1.

3.1 Water Clusters

A vast number of alternative intermolecular potentialsenaeen proposed for water, in
accord with the central importance of the liquid phase fanmlecular and atmospheric
simulations. It is interesting to compare the global minifoawater clusters, (5O)y,
with different potentials as a function d@f to relate the corresponding structures to the
predicted behaviour for bulk water. The observed trends atsy point to deficiencies in
the empirical parameterisation, and provide insight irde this may be improved.

The first basin-hopping study of water clusténsrovided results for the TIP4P poten-
tial’”-28up to N=21. These predictions have all been confirmed in subseguedieg® 3°,
and were compared with a five-site TIPSP mdtely James et a? in 2005. The results
are summarised in Tab. 1 and the structures can be downldexhedhe Cambridge Clus-
ter Databas€. The main difference between the two models is that the ivegpartial
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charge is shifted and split in the TIP5P potential, with tha af representing the oxy-
gen lone pairs more realistically. When the TIP4P global maiare relaxed with the
TIP5P potential (HO),3 and (HO);7 lose a single hydrogen-bond, while {8)-, loses
two. The rest are topologically stable, but start to diffiemfi the TIPS5P global minima
beginning with (HO)s (Tab. 1). The clearest systematic trends are that TIP4Ryexatgs
the relative stability of fused cubic structures comparethbse containing five- and six-
membered ring8, while TIP5P global minima tend to have fewer hydrogen-tsoticin
the TIP4P counterpa®s These results are in line with previous work, which sugggst
that suggested tetrahedral arrangements of hydrogerstamadavoured for TIPSP.
Locating the global minima for water clusters is signifidaritarder than for most
atomic clusters with a comparable number of degrees of dre€d*®-34 The added diffi-
culty comes from the coupling of translational (centre osg)aand orientational degrees
of freedom. With the molecular centres of mass roughly @mdhe possible hydrogen-
bonding patterns can span a wide range of energy, and a age-search procedure is
required to locate the global minimum efficiently. Previdasin-hopping schemes have
employed blocks of moves involving only centre-of-masgldisements alternating with
moves involving only angular displacemetits More systematic, but less general ap-
proaches (specific to water), have employed prescreenitg tfydrogen-bonding patterns
to identify the best candidat®s*®> The effect of the coupling between translation and
orientation has been visualised for the,(®) cluster, revealing a hierarchical potential
energy landscape, with low-lying minima separated by higibrs- 746, This structure is
associated with multiple relaxation time scales due toangel number of kinetic trapg®.

3.2 The Thomson Problem

J. J. Thomson formulated his famous problem in 1904 as a nfodatomic structuré.
The question he posed is to find the lowest energyNounit charges constrained to a
sphere, with potential energy (atomic units)

1
V22m7 (2)

where the radius isr,| = 1 for all particlesa. Although this Thomson model did not
prove to be useful for analysing the electronic structurgtoims, it has instead provided in-
sight into the structure of a wide variety of systems coiirséto have spherical topology.
Examples include spherical virudés®, multielectron bubbles in superfluid heligh??,
‘colloidosomes®*—%5, superconducting filn®§%’, lipid rafts deposited on vesicis cell
surface layers in prokaryotic organisth§? colloidal silica microspher&$ and micropat-
terning of spherical particlé$

Euler’s theorem states that the total disclination chargstrbe 12 for a triangulated
structure defined by a set of particles constrained to a gjahsurface. Here the disclina-
tion charge is defined a@ = 6 — C, whereC' is the number of neighbours for a particle
confined to the surface. The simplest way to satisfy thisltagcal constraint is for 12 par-
ticles to form five-coordinate disclinations. A number oblghl minima for the Thomson
problem at smaller sizes do indeed conform to this patteuhalternative defect struc-
tures occur a®V increases, providing less strained geometries and lovesgis 53 For
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N =400 N =410 N =420 N =430

N = 440 N = 450 N = 460 N =470

N =480 N =490 N =500 N =510

N =520 N =530 N =540 N =550

N = 1500 N = 2000 N = 2500

Figure 1. Voronoi representations of the lowest minima latébe N = 400, 410,..., 570 and N = 1500,
2000 and 2500. The pentagons, hexagons and heptagonsaueecaled, green and blue, respectidély

example, dislocations consisting of adjacent five-co@tdirand seven-coordinate parti-
cle$*-5¢are observed, and extended dislocations containing ag@ptnd two pentagons
in the Voronoi representation carry the same unit disdlimetharge as a single pentagon.
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These features are favourable for intermediate &izasagreement with predictions from
an continuum elastic mod€l As the number of particles increases further we find global
minima containing twinned defects, where two heptagonsesha edge in the Voronoi
construction, with three pentagons on the periphery. Agtia disclination charge is
unity. For N > 400 twinned defects and embryonic grain boundaries appear tbée
most common motifs in the lowest known minima (Fig"15®

Since the number of local minima generally increases exptially with sizeé® ©°,
global optimisation becomes correspondingly more diffiddbwever, the rate of increase
for the Thomson problem is smaller than for systems boundhbyter-range potentials.
The long-range Coulomb potential supports fewer local maifor reasons that are well
understood"3. Nevertheless, locating the true global minimum for the fikon prob-
lem with a thousand or more particles can still be challegffinPursuing these searches
may be very rewarding, particularly when remarkable stmes appear for particular sizes.
Many putative global minima at larger sizes exhibit ‘roseteatures in the Voronoi rep-
resentation, where a central pentagon is surrounded by &péagons alternating with
five additional pentagons (Fig. 1). In fact, there are caatgidjlobal minimum structures
with icosahedral symmetry, which exhibit twelve such rasstthereby achieving the cor-
rect disclination chard®. These structures were anticipated using explicit constm
by Perez-Garrido and Moof® and are referred to as ‘pentagonal buttons’ in a report that
employs continuum elastic thedfy which cites unpublished work by A. Toomre. Basin-
hopping global optimisation has now identified structurés woint group/ at N = 1632
and 1902 as likely global minima. It will be very interestitigsee whether these motifs
can be identified in any experimental systems in the future.

3.3 ABinary Glass-Former

Predicting crystal structures can also present a formédpldblem for global optimisa-
tion®1:82. Some of the issues are common to the protein structureqgieaiproblens®,
while others, such as the size, shape, and content of thecalipare peculiar to bulk
packing. There have been relatively few applications ofrbhspping to crystal struc-
ture to date, and this is an area where increased activitgalylin the near future. One
notable success was the location of a crystal structurehimpbpular binary Lennard-
Jones (BLJ) system, which some workers in the field belieeeldatve no crystal. BLJ
models have proved very popular models in the supercootpdds and glasses field,
since they can be designed to disfavour crystallisationasmal molecular dynamics time
scale§*8%77.90-92 The system described here corresponds to an 80:20 mixtukeBo
atoms with parametersaa = 1, oap = 0.8, o = 0.88, eaan = 1, eap = 1.5, and
egg = 0.5 8. The Stoddard-Ford scheme was used to ensure that the emadgjrst
derivatives were continuous at the cut®ffA non-phase-separated crystalline state was
first reported using basin-hoppiffg and a still lower phase-separated state has been ex-
plicitly constructe@*. The unit cell for the non-phase-separated crystal hasespamp
I4/mmm, with a structure analogous to Ir(UL)
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Figure 2. Disconnectivity graphs for three crystallineteyss; some of the low-lying minima are illustrated near to theiresponding branches. Left: disconnectivity
graph obtained at one atmosphere pressure for a supercélaft@ms using a modified Stillinger-Weber silicon poteftiathere the magnitude of the three-body term is
increased by 50% Middle: disconnectivity graph including the lowest 500 imia for the unit density Lennard-Joriésrystal with a supercell containing 256 atdths
Right: disconnectivity graph for a binary Lennard-Jongstal represented by a supercell containing 320 atoms in 2080B ratio’®.
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Figure 3. Disconnectivity graph obtained for a BLJ systertinsD atoms in the supercell at a number density of
1.301;3; andkpT/ean = 0.713. The minima and transition states correspond to a locallydicgmolecular
dynamics trajectorf? defined using the Mountain and Thirumalai energy fluctuatiotria?é.

The additional complexity that arises for the BLJ systemisible even in low-lying
regions of the potential energy surface around the crySigl.2 compares the correspond-
ing disconnectivity graph ®® with those obtained for two systems that readily crystallis
The BLJ graph exhibits low-lying minima separated by higirieas, which characterise
a ‘frustrated’ landscaf& %’. At higher energy, the BLJ landscape exhibits glassy char-
acteristics, with numerous local minima correspondingn@hous structures separated
by barriers that are very large compared to the availablertheenergy at relevant tem-
peratures (Fig. 3§1° This structure is essentially the opposite of that exgkdoe
a good ‘structure-seeking’ system corresponding to mihiimastrationt=2°7191 Crys-
tal structure prediction for molecular glass-formers,eesgly those involving hydrogen-
bonding®2-1% is unlikely to become a routine procedure for some time.

3.4 Modelling Mesoscopic Systems

A fully atomistic approach to modelling mesoscopic systesngsually neither practical
nor necessary. Often we are interested in generic propedrel understanding the mini-
mum conditions for which particular structures are favblgaFor example, a wide range
of alternative shells, tubes, spirals and helices can baddrby relatively simple build-
ing blocks if we tune the shape of the interactions betweemt~11% Here we have
considered constituent particles as rigid bodies, usimgieaaxis coordinates to describe
orientatiorf' 1. (This scheme was also used for the TIP5P water clustersibeddn
Section 3.1.) The Paramonov-Yaliraki potential can be tseatkfine the shape of single-
site attraction and repulsion terf¥§ with additional sites decorating the rigid body. This
representation is efficient enough to provide a frameworlaf@lysing how the global po-
tential energy landscapes changes with the parameterisathich enables us to identify
systems capable of self-assembly.

The first step in this process always involves identifying tiobal minimum. One
particular design principle that has recently been emmldgeconstruct helical strands is
the interplay between competing length scH2$%® Asymmetric dipolar dumbbells were
used to model experiments involving colloidal buildingdke''3. Each dumbbell involves
two Lennard-Jones sites with a point-dipole directed acthe axis between them, and
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Figure 4. Potential energy;, as a function of integrated Cartesian path length alongétleway,s for conver-
sion of left- and right-handed helices composed of 13 dipdlembbells. Left- and right-handed portions of the
helix are coloured red/yellow and green/cyan in local minitesirated along the profit@e.

the ratio of the diameters of the spherical lobes then definessymmetry parameter,
When an assembly of such particles is simulated in a condittie field the global min-
imum becomes a helix above a critical valuecof The competing length scales are the
steric interactions and the tendency of the dipoles to aliigim the applied field. Both left-
and right-handed helices then exist, with equal energied tike pathway between them
exhibits some remarkable properti&s The energy profile for this path is illustrated in
Fig. 4. The mechanism involves migration of the boundarybeh regions with opposite
handedness via a series of transition states. Each of ttegserresponds to an elonga-
tion of the chain, so that elongated and compact states tidrealternate along the path.
At the same time, the terminal dumbbells rotate in oppositrtons throughout the path.
Hence this pathway involves coupled linear and rotary nmptamd in ongoing work we
are seeking a way to drive the transition using an exterretiggrreservoir.

4 Conclusions

Global optimisation will often be the first calculation taron a new model system. This
approach can result in large savings of computer time andahueffort if detailed ther-
modynamic and kinetic properties are of interest. For imsa it may be necessary to
run parallel tempering simulations for hundreds of nanosds before escape from a high
energy local minimum is achieved, whereas global optirasawill produce lower-lying
minima in a few steps. Hence global optimisation runs ardyiko be much more efficient
for investigating the stability of a structure obtained bystruction, or for testing a known
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crystal structure with an empirical force field.

Basin-hopping global optimisation, which covers any pthoe where steps are taken
between local minima, has proved to be a very effective ttwlparticular, it is readily
transferable between different systems, because verydeanpeters need to be specified in
advance. Since optimal efficiency can only be obtained ore&now the correct answer,
the ability to obtain good candidates for the global minimwithout an extensive search
of parameter space is particularly valuable.

The examples illustrated above are simply intended to slhomesof capabilities of the
basin-hopping approach. In the future, such calculatioadikely to play a key role in
the design of self-assembling systems, where we must wbafythe target morphology is
indeed favourable under experimental conditions. To datex whether this structure is
kinetically accessible generally requires further caltiohs 8 but global optimisation
can help to guide these searches into regions of parametee fipat are likely to be most
productive.
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Analyzing coevolutionary relationships in proteins offéhe possibility to identify “interac-
tion” partners, e.g., residues, within or between protePreviously suggested approaches to
quantify such relationships includgatistical coupling analysjsvhich determines the degree
of coevolution by either performing a perturbation analy@isobtaining empirical, classical
correlation measures. Computing thetual informatiorof a protein multiple sequence align-
ment is a well-established approach to evaluate the caoelbetween amino acids. Here, we
compare this information-theoretical method to the statistioupling analysis and discuss the
underlying concepts.

1 Introduction

Mutations in the genome change the primary structure of &prand can thereby alter the
chemical and physical identity of an amino acid — leadingadyrbed interactions in the
protein. Since there is a selective pressure to maintaifuti@ion of the protein, compen-
sating mutations are favored. Understanding this evalatip pressure on the molecular
phenotype requires the detailed analysis of such coewvolary relationshigswithin or
between proteins.

Using a sufficiently large number of homologous sequencesconstructs multiple
sequence alignments (MSA) and uses these as input for ctiewvary analysis. This step
can be performed, however, using different concepts, whesgective advantages and
shortcomings we discuss in this contribution.

2 Statistical Coupling Analysis

Statistical coupling analysis (SCA) is based on the assompihat every position in an
MSA whose amino acid distribution differs from the mean ias®rved to a certain extent.
The mean distribution is derived from histograms of the iestin a database, e.g., of
all protein sequences deposited in Swiss-Prot’s non-ahindatabage In the original
formulation of SCA, an empirical evolutionary conservatiparameteAGS® is defined
for sites:

T

2
AGT™ = kT* In 2 1
: > (I @)

X
- Pisa

with k7 being an arbitrary energy unik” the probability of any amino acid at site
1 expressed as binomial probability of the observed numbemaho acid typer given
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its mean frequency derived from the database as descrim@ abndFyjs, the mean
frequency of amino acid in the MSA under consideration, again written as a binomial
probability.

To measure the relationship between two sitesd;, a perturbation of the amino acid
frequencies at another s'ﬂQAGfltg;) is simulated. This is done by selecting a subset of the
MSA choosing only those sequences in which the most prevalemo acid of position
can be found. The magnitude of the difference of the statiséinergy vectors at positian
considering either the full alignmenAGS™) or the selected subseh(512!) is calculated:

i|6j
2
PE_ pz
ANGS = kT*\J 3 (m pr I ) @)
- MSA|5j MSA

This statistical coupling energy quantifies the degree thvthe distribution of the
amino acids at positiohis modified by the perturbation in columnIn the second variant
of SCA, the measure is reformulated as a weighted covariance

®)
1 oD

AANGS® ~ —— s 0 Oy ®3)
fi of;

with fi(“i) being the frequency of amino acid type at positions, D§b) the relative en-
tropy that indicates how unlikely the observed frequencgrofno acid at positionj was
if b occurred randomly according to the underlying backgroueduency, and’;; the
covariance of the MSA columnsand;. For further details, see Ref. 3.

3 Mutual Information

An alternative to SCA is the Mutual information (MI). It is anformation-theoretical
measure based on Shannon’s entfoplg quantifies the dependence of two columns in
an MSA by describing how much information about a residuedinmn ; is obtained by
revealing the type of the corresponding amino acid in colymn

The MI of an amino acid paifi, j) is calculated by

My =S p(oi,05) - log, <M> @)

oy 0y p(g’i) 'p(Uj)

whereo is an alphabet of the 20 amino acids as well as charactersafms (f-") and
unknown types (“X").p(0;) andp(o;) are the frequencies of amino acid typgsando;
in the respective columns.

To correctly handle gaps and unknown positions, one tylyiegplies a null model
normalizatiof~’, which can be computed efficiently on GFUs

4 Critical Assessment

4.1 Selection of Perturbations is Arbitrary

In the first formulation of SCA (Eq. 2) the choice of the typelué to-be-perturbed column
j is rather arbitrary. For example, it is not clear which anmaea of column;j to choose if
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Figure 1. Correlation and mutual information (MI) of the fupessin(z), — sin(z), andcos(z) shows that Ml
can reveal relationships which covariance cannot detect.

there is an empirical draw. At the same time, the reference (f@erefore the evolutionary
selection) might not be for a specific amino acid, but ratbeafchemical character, such
as hydrophobicity or charge. Such influence would be negdeaven discarded, in the
original SCA. To cope with this, a more involved version of S®as suggested, that is
based on a weighted covariance (compare Eq. 3).

4.2 Covariance is not an Appropriate Measure for Coevolution

However, analyzing relationships by calculating the carare as in Eq. 3 might lead to in-
consistent results. As exemplified in Fig. 1 Hie(x), — sin(z) andcos(z) functions have

a close relationship between th&nBut when we take a look at their normalized covari-
ance, the correlation, we can only see high absolute valegelensin(z) and — sin(z)
while cos(z) falsely seems to be independent of the other two functionsomtrast, the Mi
of Eq. 4 is able to reveal this connection. It is therefore telneneasure for relationships
of any two variables than approaches based on covariance.

4.3 Parametric Methods are Error-Prone

Approaches to examine coevolution can be classified intolagic groups: parametric
and non-parametric methods. While non-parametric appesaalork with the MSA as

sole input, parametric procedures rely on models with auigit assumptions. Due to our
limited knowledge of the underlying processes of molecelalution, these additional
parameters are most likely inaccurate or even biased tewaakrtain subset. In SCA,
the statistical coupling energy of an alignment column isipated from a subalignment
including only those sequences that display the most ceadermino acid in the column

@rather intuitively: knowing the value of one function, omemediately can restrict the possible function values
of any other of the three to just two possible values
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under consideration. Thereby, information of the excluskxgliences is lost and a selection
bias is created.

Due to the reduction of the MSA to smaller subalignmentsciwiig required for SCA,
a larger number of sequences is necessary. For the sama,r&3A can only be per-
formed for positions with a certain degree of conservatmerisure an appropriate size
of the subalignment. This implies the parameterizatiorbjenm from above, but also de-
mands for much larger data sets, typically not available.

4.4 Conclusion

For these reasons we consider SCA as a historically impoftan suboptimal approach
to perform an unbiased coevolutionary analysis. It is desigas a perturbation analysis
for examining carefully selected positions in an MSA. Todoct a general analysis, the
method of Ml in Eq. 4 should be applied instead.
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The functionality of biological macromolecules is adaptethtir inhomogeneous cellular en-
vironment. Meaningful theoretical descriptions of theioperties therefore require detailed
representations of their respective cellular compartmentthis contribution, we provide a
brief survey of our studies on some important components préseallular environments us-
ing various computational simulations approaches: (i) theadyics of an excess proton close to
a membrane surface, (ii) the permeation of small ions througletetial porin, (iii) fluorescent
biosensors for the detection iof vivo phosphate and (iv) the dynamics of sensory rhodopsin Il
inside a membrane environment.

1 Introduction

Although biomolecules such as proteins and nucleic acielshe engines of the cell, our
knowledge on how they behave in cells is limited. Cellulaviemments are extremely
complex, with the macromolecule concentration as mucto@sng/mk. In addition, pro-
teins function in a very heterogeneous medium, from cell brames to the cytoplasm,
which is a highly saline environment. Various componentsafiular environment such as
ions, membranes and crowding can considerably alter thaivita of individual macro-
molecules, both qualitatively and quantitatively. Theref to identify the functional form
of macromolecules in-cell conditions, these cellular @Bemust be taken properly into
account.

In this paper, we briefly survey our computational studieseveral cellular environ-
mental factors (components), such as pH value (excess)pionic strengths (K, Na*
ions), buffering agents (phosphate ions) and membrare(egral proteins). We first
present the study of a single excess proton migrating atilagtrophobic interfaces. Next
we talk about K and Na" ion permeation through a bacterial porin. After that we repo
our progress on detecting in-cell inorganic phosphate lyrdlscent biosensor molecules.
In the last part we show how the integral protein - the sendwogopsin Il - behaves in a
membrane environment

2 Excess Proton at Water/Hydrophobic Interfaces

Water/hydrophobic interfaces are present ubiquitouslgiitogical systen’s Recently,
fluorescence experiments by our collaborator P. Palung with multistate empirical va-
lence bond (MS-EVB)and polarizable force-field calculationsave lead to the proposal
that excess protons may be localized close to such intexfadee presence of a proton at
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Figure 1. NanC periodic simulation system. A blue cylinder mahe ion passage path.

hydrophobic surfaces could play a pivotal role in a varidtfjuadamental interactions, in-
cluding proton folding, protein-ligand (ligand= proteldNA, RNA, drug) and lipid mem-
brane/cytoplasm interactichsWe are applying Car-Parrinello (CPab initio molecular
dynamics (MD) simulations, which include electronic p@ation and charge transfer ef-
fects to study the proton migration at such interfaces,yapglthe CPMD prograrfh

Our system consists of 25 decane molecules, 302 water mies¢cand 1 excess proton
(1707 atoms in total). The free energy (FE) profile of the eggaroton in the direction
perpendicular to the water/hydrophobic liquid surfacelieen provided by 70 b initio
metadynamics To the best of our knowledge, this is the largest first-ppilechased free
energy calculation presented so far on a (bio) chemicaéryst

3 lon Permeation through a Bacterial Porin

The permeation of small inorganic ions through cell membésds a key biological element
in physiological processes like nerve impulse propagatiardiac and smooth muscle con-
tractiort. Clearly, there are certain proteins, integrated in the brame and spawning
from the inner to the outer compartment, through which tims jpass. Important phenom-
ena being investigated are (i) a given protein channelscsglty for certain ion species
and (ii) gating the opening and closing of the protein, iretliby voltage changes or ligand
binding. Trying to work on these topit'sby means of atomistic simulations still is a chal-
lenge for many reasons, especially since only few 3D strastof protein channels have
been resolved and system sizes for realistic simulatiombage, i.e highly demanding on
computational resources.

Recently, the class of KdgM bacterial outer-membrane prst@as discovered, and
for NanC, an acidic sugar-transporting porin, the struictuas resolved. Since NanC
forms a compacB-barrel and allows for permeation of small ions like™Nar K+, it is a
suitable candidate for computational studies in termsratifation sizes (cf. Fig. 1).
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Also, by Bob Eisenberg’s group, it was shown that NanC is lyigfficient in conduct-
ing K+ ionst4. Thus, NanC is an ideal starting point to work on the mechmasisf Na~
or KT permeation by means of MD simulations.

The permeation dynamics of the ions, here"N&™ and CI, is determined by FE
changes along the permeation coordinate (the channel aSigrting from the crystal
structure of NanC, we built an atomistic model, including fDAOPC membrane and the
water and ion environment (ca. 71000 atoms). We are usingdyeamicd and umbrella
sampling® to create FE profiles. Analysing the FE curves, in particolaima and bar-
riers, yealds a deeper insight on (i) the protein atom gratmngly interacting with the
traversing species, (ii) estimates about diffusion timed @ii) differences between Na
and K permeation.

Using classical force field techniques in this context, havedoes not allow us to cal-
culate experimental observables related to selectividy, durrent-voltage curves (CVCs)
or ion fluxes (IFs). This is why we closely collaborate withiB&isenberg, who uses our
structural information, e.g. data of type (i), as input paeters for other classes of cal-
culations like Monte Carlo, Density Functional of Fluidigson-Nernst-Planck thed
or energetic variational on¥s Since those simulations yield CVS and IFs directly, this
combination of techniques allows us to verify the preditsiérom our FE calculations.

4 Detecting In-cell Phosphate by Fluorescent Biosensor

Fluorescence probes are routinely used to investigatetthetigral basis of biochemi-
cal processem vitro andin vivo. Webb and co-workers developed efficient rhodamine-
based fluorescent biosensors suitable for real-time measmts of inorganic phosphate
(Pi)'81% exchanged in a multitude of cellular proce$8e3he sensor uses a protein very
robust to denaturation as a scaffold, the phosphate birmistgin (PBP) fronEscherichia
coli. Two rhodamines (6-IATR) have been covalently attachedutation-generated cys-
teines (A17C, A197C) on the surface of the protein as fluengtserobes (Fig. 2). A17 and
A197 have been selected to obtain a large change in theveefadisitions of the two flu-
orophores upon Pi bindikg?3 As a result, the fluorescence emission of the rhodamines
increases-18-fold upon binding Pi, in accordance with a reduction efdegree of stack-
ing, which is known to quench fluorescefite

To further analyze the dependence of optical fluorophorgeies on protein con-
formational changes, in particular the ability to promotacking, mutant variants of
rhodamine-PBP (A17C, A197C) were investigated. In paldiciwo additional mutations
were introduced into the rhodamine-PBP (A17C, A197C) syst&¥198A and L291A.
These two amino acids are predicted from the calculatedeitructure to interact with
the rhodamine closer to the protein surface, i.e. the rhatmattached to C197. Structural
models have been generated for rhodamine-PBP (A17C, A1®£Tiding the mutations
L198A and L291A both with and without Pi. These systems wepdglirated by classi-
cal MD methods using the NAMD progréfhin preparation of subsequent quantum me-
chanical treatment. The classical simulations show th&8®Alinteracts through its aro-
matic ring with rhodamine attached to C197 all over the atatsrajectory, thus stabilizing
the chromophores’ binding. Based on our calculations, weefiore propose that Y198A
rhodamine-PBRPi and rhoadmine-PBP will result in different structuratiadts as com-
pared to the parent system, which will affect the opticalctpen of the chromophores.
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Figure 2. A17C, A197C RH®PBP adducts with Y198A with (b,d) and without (a,c) Pi boundnstructed
based on the X-ray structures of PBP in complex wiftf Bhd of T141D PBF, respectively.

For this goal we also introduced the L291A mutation. To daiee the structural de-
pendence of optical properties we are applying the CP/MMityd initio/classical MD
approack® 26 combined with TDDFT and GW-BSE calculations, which hasnbalecady
used by us for investigating absorption spectra of formajide and indol&-2%in aqueous
solution. Such approach ensures the inclusion of the emviemtal effects in the optical
properties.

5 Activation of Sensory Rhodopsin Il in Explicit Membrane
Environment

Throughout the microbial, animal, and plant world, orgargshave evolved exquisitely
sensitive photo detectors that monitor spatial and teniparations in light intensity and
color. Understanding the ability of living organisms to atisvisible photons is the es-
sential issue of photobiology. PhotoreceptordHimlobacterium Salinaruma microbial
organism, have been studied extensively because theydersiuinple model systems for
the two fundamental functions of light sensing: active sggort and phototaxi8. Active
transport allows the organism to convert light energy ifternical energy while photo-
taxis modulates the swimming behavior of the bacterium apoase to the light. These
photoreceptors are all membrane proteins which share a contepology, namely the
seven transmembrane helices connected to each other leyrpladps. These seven he-
lices form an interior binding pocket containing a retinadlacule, a form of vitamin A.
Upon light excitation the retinal changes conformation ehnarge distribution which lead
to activation of the receptor.

Sensory rhodopsin Il iflalobacterium SalinaruniHsSRII) functions as a light-sensor
that mediates the negative phototaxis from harmful blueegrighg®. HsSRII is tightly
bound to its cognate transducer protein Htrll, forming a ptaxinside the cell membrane.
Upon light activation, HsSRII relays the signal to Htrll, izh in turn initiates a cascade
that regulates the cell’s flagellar motér Thus, the light signal is converted to the motion
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in Halobacterium Salinarum Understanding how only few switches of the retinal can
induce the structural change of the receptor is of the utimtesttest for this photoreceptor.

Molecular dynamics (MD) simulations provide powerful tedb observe the dynamic
fluctuation of protein structures with atomic resolufi&rThis approach allows us to study
the conformational differences between distinct statésarholecules. Therefore, we have
been setting up two systems of HsSRII using the MD approacte $9stem is in the in-
active conformation (dark state) and another one in anectwformation (M-state). The
two structures were inserted into an explicit membranerenwment and the MD simu-
lations of those systems will be performed up to sub-miarosd timescales, using the
program GROMACS". Analysing the conformational differences between daakesand
M-state after finishing simulations will help us to providewninsight into the activation
mechanism of HsSRII in membrane environment.
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Workshop Program

Wednesday 20.07.2011

07:30
08:00-08:45

Pick up at hotels inlich
Registration

Morning Session (Chair: Ulrich H.E. Hansmann)

08:45-08:55
08:55-09:00
09:00-09:20
09:20-10:05
10:05-10:50

10:50-11:15
11:15-12:00

12:00-12:45

12:45-14:00

Welcome by Prof. Dr. Dr. Thomas Lippert

Introductory remarks and introduction intessen

Laudatio (Jeff Skolnick)

Harold Scheraga (Cornell University, Ithadd, USA):
Advances in Protein Biophysics

Adam Liwo (University of Gdansk, Gdansk, Pdlan
From Atomistic Simulations to Network Description of Bigical Sys-
tems

Coffee break

Andrzej Kolinski (University of Warsaw, Wangd@oland):
Coarse-grained Protein Modeling: Dynamics, Folding Pagsvand
Mechanical Unfolding

Panel discussion: Force fields
Participants: H. Scheraga, Ch.
A. Liwo, U. Roéthlisberger

Brooks, A. Kolinski, E. lahd

Lunch

Afternoon Session (Chair: Olav Zimmermann)

14:00-14:05
14:05-14:50

14:50-15:35

15:35-16:00
16:00-16:45

16:45-17:15

Introduction to session

Richard Lavery (CNRS, Lyon, France):
From Macromolecular Mechanics to Function

Kim Sneppen (Copenhagen University, Copesddenmark):
Modeling Nucleosome Mediated Epigenetics

Coffee break

Michael &ssig (University of Cologne, ®n, Germany):
From Biophysics to Fitness of a Molecular Pathway

Award talk: Marco Matthies (University of Haom, Hamburg, Ger-
many):
Continuous-space Sequence Optimisation for RNA Secon8anc-
tures
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17:15-18:00 Panel discussion: Molecular systems biology
Participants: R. Lavery, M. &ssig, J. Skolnick, K. Sneppen

18:00 Welcome Reception and Poster Session

20:00 Bus to Hotels inidich

Thursday 21.07.2011

08:00 Pickup at Hotels inldich
Morning Session (Chair: Sandipan Mohanty)

08:30-08:35 Introduction to session
08:35-09:20 David Wales (Cambridge University, Cambrjdgji€):
Exploring Energy Landscapes: From Molecules to Nanodsvice
09:20-09:50 Award talk: Emal M. Alekozai (University of Higlberg and Oak
Ridge National Laboratory, Heidelberg, Germany):
Multilevel Enhanced Sampling of Cellulose-Cellulase tatgion
09:50-10:15 Coffee break
10:15-11:00 Erik Lindahl (KTH Royal Institute of TechnolpgStockholm, Swe-
den):
Dynamics and Function of Voltage- and Ligand-gated lon Qleén
11:00-11:30 Award talk: Bettina Keller (Freie UnivegiBerlin, Berlin, Germany):
Markov State Models and Dynamical Fingerprints: Unrawglithe
Complexity of Molecular Kinetics
11:30-12:15 Panel discussion: Exploring/interpretingrgy landscapes
Participants: H. Scheraga, H. Grublter, A. Kolinski, R. Lavery,
D. Wales
12:15-12:30 Group photo

12:30-14:00 Lunch
Afternoon Session (Chair: Jan Meinke)

14:00-14:05 Introduction to session

14:05-14:50 Jeffrey Skolnick (Georgia Tech, Atlanta, USA)
Crowding and Hydrodynamic Interactions Likely Dominate vivo
Macromolecular Motion

14:50-15:35 Frankilicher (Max Planck Society, Dresden, Germany):
The Role of Pulling Forces in Cell Division

15:35-16:00 Coffee break
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16:00-16:45

16:45-17:15

17:15-18:00

18:15
18:30
22:00

Amos Maritan (University of Padua, Paduay)tal
An Unified Perspective on Proteins: A Physics Approach
Award talk: Nicoletta Ceres (Univeesityonl / CNRS, Lyon, France):
PaLaCe: Toward a Transferable Coarse-grain Model for Prote-
chanics and Dynamics
Panel discussion: Cellular environments
Participants: F.illicher, A. Liwo, A. Maritan, J. Skolnick
Bus to dinner at Castle Obbendorf (Hambach)
Dinner
Bus to Hotels inidlich

Friday 22.07.2011

8:00

Pickup at Hotels intdich

Morning Session (Chair: Paolo Carloni)

08:30-08:35
08:35-09:20

09:20-10:05

10:05-10:35

10:35-11:00
11:00-11:45

11:45-12:30

12:30-12:45
12:45-14:00
14:00-15:00
15:15

19:30

Introduction to session

Helmut Grubiiller (Max Planck Society, Gttingen, Germany):
Exploring Protein Dynamics Space: The Dynasome

Ursula Bthlisberger (Ecole Polytechniqueedrale Lausanne, Lau-
sanne, Switzerland):
Structural Stability of Prion Protein and Amyloid Beta Hdps and
their Interaction with Metal lons

Award talk: Yinghao Wu (Columbia Universitye York, USA):
Multiscale Simulations of Cadherin-mediated Cell Adhasio

Coffee break

Charles Brooks (University of Michigan, Anrbar, USA):
Multi-scale Studies of Viral Capsid Dynamics and Mechanics

Panel discussion: Multi-scale modelling
Participants: H. Scheraga, Ch. Brooks, H. Griitier, E. Lindahl,
U. Rothlisberger

Concluding remarks

Lunch

dlich Supercomputing Centre, Guided Tour
Bus to Cologne
Social Event: Visit of a Traditional Brewhouse (drinks ambd on
one’s own expense)
Bus to dlich
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List of Participants

Adler, Thomas; University of Stuttgart; Wallerfangen; &any

Alekozai, Emal M.; University of Heidelberg and Oak Ridgetidnal Laboratory;
Heidelberg; Germany

Barrera Pafio, Claudia Patricia; German Research School for Simuia8iciences;
Julich; Germany

Bilsel, Mustafa; Ankara University; Ankara; Turkey
Biswas, Mithun; University of Heidelberg; Heidelberg; Gemy
Blaszczyk, Maciej; University of Warsaw; Warsaw; Poland

Brieg, Martin; Karlsruhe Institute of Technology; EggexiatLeopoldshafen; Ger-
many

Brooks, Charles; University of Michigan; Ann Arbor; USA

Carloni, Paolo; German Research School for Simulationrgeig dilich; Germany
Ceres, Nicoletta; UniverdtLyonl / CNRS; Lyon; France

Choy, Desmond; University of Cambridge; Cambridge; UnKéthgdom

Cong, Xiaojing; International School for Advanced Studlieseste; Italy

Corradi, Valentina; University of Calgary; Calgary; Caaad

Dibenedetto, Domenica; German Research School for Simnl&ciences; ilich;
Germany

Dreyer, Jens; German Research School for Simulation Seseddich; Germany
Eder, Christian; Forschungszentruiiich; Jilich; Germany

Faber, Michael; Max Planck Institute of Colloids and Inéeds; Potsdam (OT Golm);
Germany

Falkner, Benjamin; Forschungszentruitich; Jilich; Germany

Ferro, Noel; University of Bonn; Bonn; Germany

Finnerty, Justin; German Research School for Simulatioerges; dlich; Germany
Giansanti, Andrea; Sapienza University of Rome; Romey Ital

Giorgetti, Alejandro; University of Verona; Verona; Italy

Gront, Dominik; University of Warsaw; Warsaw; Poland
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Grubnilller, Helmut; Max Planck Society; @tingen; Germany
Grudinin, Sergei; INRIA; Saint Ismier; France

Hamacher, Kay; TU Darmstadt; Darmstadt; Germany

Hansmann, Ulrich; Michigan Technological University; Hion; USA
Heitzer, Christina; Philipps-Universit Marburg; Marburg; Germany
Heuer, Andreas; WWU linster; Minster; Germany

Hoffmann, Falk; Forschungszentrurilidh; Jilich; Germany

Hung, Yu Fu; Forschungszentrurilith; Jilich; Germany

Ippoliti, Emiliano; German Research School for Simulat®ciences; dlich; Ger-
many

Jerabek, Hangjg; Heidelberg Graduate School of Math. and Comp. Methodihe
Sciences; Heidelberg; Germany

Julicher, Frank; Max Planck Society; Dresden; Germany

Kamat, Sanjay; Forschungszentruitich; Jilich; Germany

Kamps, Martina; Forschungszentruiiidh; Jilich; Germany

Kar, Parimal; Max Planck Institute of Colloids and IntedagPotsdam; Germany
Karlsttom, Gunnar; Lund University; Lund; Sweden

Keller, Bettina; Freie Universitt Berlin; Berlin; Germany

Kirschner, Karl N.; Fraunhofer Institute; Sankt AugustBermany

Klein, Doris Lenore; Heinrich-Heine Univerait, Diisseldorf; Germany

Klenin, Konstantin; Karlsruhe Institute of Technology; demstein-Leopoldshafen;
Germany

Kmiecik, Sebastian; University of Warsaw; Warsaw; Poland

Kolinski, Andrzej; University of Warsaw; Warsaw; Poland

Konig, Bernd; Forschungszentrurialigh; Jilich; Germany

Kouza, Maksim; Michigan Technological University; Hought MI; USA
Krammer, Eva-Maria; UniverditLibre de Bruxelles; Brussels; Belgium
Kreyssig, Peter; University of Jena; Jena; Germany

Kruger, Dennis M.; Heinrich-Heine-University;iBseldorf; Germany
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Kriiger, Jens; University of Paderborn; Paderborn; Germany

Kulinski, Tadeusz; Polish Academy of Science; Poznan;rbla

Lapidus, Dmitrijs; Latvian Institute of Organic Synthediiga; Latvia

Latek, Dorota; International Institute of Molecular andi@ology; Warsaw; Poland
Lassig, Michael; University of Cologne;dn; Germany

Lavery, Richard; CNRS; Lyon; France

Legwebe, Michael; University Bordeaux 1 and ENSEIRB-MATMECA rBeaux;
Bordeaux; France

Lindahl, Erik; KTH Royal Institute of Technology; Stockmoj Sweden
Lippert, Thomas; Forschungszentruiiidh; Jilich; Germany
Liwo, Adam; University of Gdansk; Gdansk; Poland

Margraf, Thomas; Uni Hamburg; Hamburg; Germany
Maritan, Amos; University of Padua; Padua; Italy

Matthies, Marco; University of Hamburg; Hamburg; Germany
Meinke, Jan; Forschungszentruiilidh; Jilich; Germany
Minicozzi, Velia; University of Rome "Tor Vergata”; Romegaly
Mohanty, Sandipan; Forschungszentruitich; Jilich; Germany
Musiani, Francesco; University of Bologna; Bologna, Italy
Nadler, Walter; Forschungszentruiiidh; Jilich; Germany

Nguyen, Chuong H. H.; German Research School for Simul&éiciences; ulich;
Germany

Nguyen, Trung Hai; German Research School for Simulatioaeres; dlich; Ger-
many

Okamoto, Yuko; Nagoya University; Nagoya; Japan

Olubiyi, Olujide; German Research School of SimulatioreBices; dlich; Germany
Osborne, Kenneth; Forschungszentruttich; Jilich; Germany

Pasi, Marco; BMSSI; Lyon; France

Pisliakov, Andrei; RIKEN; Wako-shi; Japan

Poojari, Chetan; Forschungszentruiatich; Jilich; Germany

249



Quy, Vo Cam; German Research School for Simulation Scieldaésh; Germany
Re, Suyong; RIKEN Advanced Science Institute; Saitamaadap

Roes, Claas; Forschungszentruitich; Jilich; Germany

Rossetti, Giulia; German Research School for Simulatiaar®es; dlich; Germany

Rothlisberger, Ursula; Ecole Polytechniquéderale Lausanne; Lausanne; Switzer-
land

Ruckert, Chris; Forschungszentruiiidh; Jilich; Germany
Rudack, Till; Ruhr University Bochum; Bochum; Germany
Rzepiela, Andrzej; Freiburg University; Freiburg; German

Saini, Jagmohan; Heinrich-Heine-Universityii§seldorf; Germany
Scheraga, Harold; Cornell University; Ithaca, NY; USA

Schug, Alexander; Karlsruher Institufirf Technologie; Eggenstein-Leopoldshafen;
Germany

Schweizer, Sabine; Technical University Munich; Freisi@grmany
Seo, Mikyung; University of Calgary; Calgary; Canada

Shen, Jana; University of Oklahoma; Norman, Oklahoma; USA
Shim, Vickie; University of Auckland; Auckland; New Zealdn
Sieradzan, Adam; University of Gdansk; Gdansk; Poland

Singh, Gurpreet; University of Calgary; Calgary; Canada

Singh, Sameer; Forschungszentrditich; Jilich; Germany
Skolnick, Jeffrey; Georgia Tech; Atlanta; USA

Smiatek, Jens; WWU Ninster; Minster; Germany

Sneppen, Kim; Copenhagen University; Copenhagen; Denmark
Strodel, Birgit; Forschungszentrurillith; Jilich; Germany
Strodel, Paul; German Research School for Simulation egnililich; Germany
Sugita, Yuji; RIKEN; Saitama; Japan

Tamamis, Phanourios; University of Cyprus; Nicosia; Cygpru
Vancea, loan; Forschungszentruitich; Jilich; Germany

Wabik, Jacek; University of Warsaw; Warsaw; Poland
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Wales, David; Cambridge University; Cambridge; UK

Wang, Zhe; Forschungszentruiidh; Jilich; Germany

Weil3graeber, Stephanie; TU Darmstadt; Darmstadt; Germany

Wieczorek, Grzegorz; Weizmann Institute of Science; Retidgrael

Wojtyczka, Andre; Forschungszentruiiidh; Jilich; Germany

Wu, Yinghao; Columbia University; New York; USA

Zhang, Chao; German Research School for Simulation Sageddeh; Germany

Zimmermann, Olav; Forschungszentruiatich; Jilich; Germany
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1. Three-dimensional modelling of soil-plant interactions: Consistent coupling
of soil and plant root systems
by T. Schriéder (2009), VIII, 72 pages
ISBN: 978-3-89336-576-0
URN: urn:nbn:de:0001-00505

2. Large-Scale Simulations of Error-Prone Quantum Computation Devices
by D. B. Trieu (2009), VI, 173 pages
ISBN: 978-3-89336-601-9
URN: urn:nbn:de:0001-00552

3. NIC Symposium 2010
Proceedings, 24 — 25 February 2010 | Julich, Germany
edited by G. Munster, D. Wolf, M. Kremer (2010), V, 395 pages
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URN: urn:nbn:de:0001-2010020108

4. Timestamp Synchronization of Concurrent Events
by D. Becker (2010), XVIII, 116 pages
ISBN: 978-3-89336-625-5
URN: urn:nbn:de:0001-2010051916

5. UNICORE Summit 2010 — Proceedings
edited by A. Streit, M. Romberg, D. Mallmann (2010), iv, 123 pages
ISBN: 978-3-89336-661-3
URN: urn:nbn:de:0001-2010082304

6. Fast Methods for Long Range Interactions in Complex Systems
Lecture Notes
edited by P. Gibbon, T. Lippert, G. Sutmann (2011), ii, 167 pages
ISBN: 978-3-89336-714-6
URN: urn:nbn:de:0001-2011051907

7. Generalized Algebraic Kernels and Multipole Expansions
for massively parallel Vortex Particle Methods
by R. Speck (2011), iv, 125 pages
ISBN: 978-3-89336-733-7
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8. From Computational Biophysics to Systems Biology (CBSB11) —
Celebrating Harold Scheraga’s 90" Birthday
Proceedings, 20 — 22 July 2011 | Jilich, Germany
edited by P. Carloni, U. H. E. Hansmann, T. Lippert, J. H. Meinke, S. Mohanty,
W. Nadler, O. Zimmermann (2012), v, 251 pages
ISBN: 978-3-89336-748-1
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The fifth workshop in the series “From Computational Biophysics to Systems Biology” (CBSB) took
place from 20 to 22 July 2011 at Forschungszentrum Jilich. It was dedicated to Harold Scheraga
who celebrated his 90th birthday that year. Dr. Scheraga pioneered the use of computers in
chemistry and biology. His work inspired many of the research areas that are the topic of this
meeting, ranging from biophysics to systems biology. In the spirit of Harold Scheraga’s work, the
workshop brought together researchers from physics, chemistry, biology, and computer science
to acquaint each other with current trends in computational biophysics and systems biology, to
explore avenues of cooperation, and to establish together a detailed understanding of cells at a
molecular level.

These proceedings contain about 50 contributions from the CBSB11 workshop including a Laudation
for Harold Scheraga by Jeff Skolnick and Harold Scheraga’s biographic keynote lecture.

This publication was edited at the Jilich Supercomputing Centre (JSC) which is an integral part
of the Institute for Advanced Simulation (IAS). The IAS combines the Jilich simulation sciences
and the supercomputer facility in one organizational unit. It includes those parts of the scientific
institutes at the Forschungszentrum Jilich which use simulation on supercomputers as their main
research methodology.

IAS Series
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